Math, asked by pallaviab1503, 11 months ago

X= (LOG X)^tany, then dy/dx is​

Answers

Answered by rajeevsehrawat481
0

Answer:

रज्स्ब्स्ग्श्स्ब्स 638284

Answered by rishabh1894041
3

Step-by-step explanation:

x =  ({logx})^{tany}  \\  \\ taking \: log \: on \: both \: sides \\ logx = tany \: log(logx) \\  \frac{1}{x}  =  \frac{tany}{x \: logx}  +  \frac{log(logx) \:  {sec}^{2} y \: dy}{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: dx}  \\   \frac{log(logx) \:  {sec}^{2}y \: dy }{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: dx }  =  \frac{1}{x}  -  \frac{tany}{x \: logx}  \\  \frac{log(logx) \:  {sec}^{2} y \: dy}{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: dx}  =  \frac{logx - tany}{x \: logx}  \\  \frac{dy}{dx}  =  \frac{logx - tany}{x \: logx \: \: . log(logx) {sec}^{2} y}   \\  \\  \\  \\ hope \: this \: will \: help \: you....

Similar questions