Math, asked by akshaymane212121, 6 days ago

x
logx dy/dx+ y = 2logx

Answers

Answered by amansharma264
2

EXPLANATION.

⇒ x ㏒(x) dy/dx + y = 2㏒(x).

As we know that,

Divide equation by x㏒(x), we get.

\implies \dfrac{dy}{dx} + \dfrac{y}{x log(x)}  = \dfrac{2 log(x)}{x log(x)}

\implies \dfrac{dy}{dx} + \bigg(\dfrac{1}{x log(x)} \bigg) y = \dfrac{2}{x}

Now, the equation is in the form of linear differential equations, we get.

\implies \dfrac{dy}{dx}  + P(x) y = Q(x)

\implies e^{\int p(x)dx} = Integrating \ \ factor = I.F

\implies y \times I.F = \displaystyle \int \bigg[ Q(x) \times I.F \bigg] dx

\implies y \times e^{\int p(x)dx} = \displaystyle \int \bigg[Q(x) \times e^{\int p(x)dx} \bigg] dx

Using this formula in the equation, we get.

\implies e^{\displaystyle \int \dfrac{1}{x log(x)}dx }

\implies e^{log(logx)} = log(x)

\implies y \times log(x) = \displaystyle \int \bigg( log(x) \times \dfrac{2}{x} \bigg) dx

\implies y \times log(x) = 2 \displaystyle \int \dfrac{log(x)}{x} dx

\implies \displaystyle \int \dfrac{log(x)}{x} dx

By applying substitution method, we get.

⇒ ㏒(x) = t.

Differentiate w.r.t x, we get.

⇒ dx/x = dt.

Put the values in the equation, we get.

\implies \int t dt  = \dfrac{t^{2} }{2}  + C.

Put the value of t = ㏒(x) in the equation, we get.

(㏒(x))²/2 + C.

Put the values in the main equation, we get.

\implies y \times log(x) = 2 \times \dfrac{log(x)^{2} }{2} + C.

\implies y \times log(x) = log(x)^{2} + C.

Similar questions