X ^ (m+n) × x ^ (n+1) × x ^(l+m) / (x ^ m × x ^ n × x ^1)^2
Answers
Answered by
0
Answer:
here is your answeer
Step-by-step explanation:
( x^{l} / x^{m}) ^{1/lm}. ( x^{m} / x^{n}) ^{1/mn}. ( x^{n} / x^{l}) ^{1/nl}
= ( x^{l-m} ) ^{1/lm}. ( x^{m-n} ) ^{1/mn}. ( x^{n-l}) ^{1/nl}
= x^{(l-m)/lm}. x^{(m-n)/mn}. x^{(n-l)/nl}
= x^{(l-m)/lm+(m-n)/mn+(n-l)/nl}
= x^{(ln-mn+lm-ln+mn-lm)/lmn}
= x^{0}
=1 (Proved)
Similar questions