Math, asked by dalchandpkw, 10 months ago

x plus one upon x is equal to 3 square root bulate is x cube + 1 upon x cube​

Answers

Answered by tahseen619
1

0

Step-by-step explanation:

Given:

x +  \dfrac{1}{x}  =  \sqrt{3}

To calculate:

 {x}^{3}  +  \dfrac{1}{ {x}^{3} }

What you have to do ?

1. Cubing both side

2. Use Algebra Formula

3. Substitute given value

4. Simplify and answer .... Easy ?

Solution:

x +  \dfrac{1}{x}  =  \sqrt{3}

[Cubing both side]

 {(x +  \frac{1}{x})}^{3}  =  {( \sqrt{3}) }^{3}  \\  \\  {x}^{3}   +  \frac{1}{ {x}^{3} }  + 3.x. \frac{1}{x}= 3 \sqrt{3}  \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3(x +  \frac{1}{x})  = 3 \sqrt{3}  \:   \:  \: [\text{From given}] \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3. \sqrt{3}  = 3 \sqrt{3}  \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  = 3 \sqrt{3}  - 3 \sqrt{3}  \\  \\ \boxed{  {x}^{3}  +  \frac{1}{ {x}^{3} } = 0}

Therefore, the required answer is 0.

Some Important Algebra Formula

  {(x + y)}^{3}={x}^{3}+{y}^{3}+ 3xy(x + y) \\ \\(x - y)^{3}={x}^{3}-{y}^{3}- 3xy(x - y)

Similar questions