X power 4 - (y + z) power 4
Answers
Answer:
( x + y + z ) ( x - y - z ) {x² + ( y + z )²}
Step-by-step explanation:
Given---> x⁴ - ( y + z )⁴
To find---> Factors of given expression
Solution---> We know that,
a² - b² = ( a + b ) ( a - b )
And a law of exponent
( aᵐ )ⁿ = aᵐⁿ
Now returning to original problem and applying above identity and law here , we get,
x⁴ - ( y + z )⁴ = ( x² )² - { ( y + z )² }²
= { x² + ( y + z )² } { x² - ( y + z )² }
= { x² + ( y + z )² } { x + ( y + z ) } { x - ( y + z ) }
= { x² + ( y + z )² } ( x + y + z ) ( x - y - z )
= ( x + y + z ) ( x - y - z ) { x² + ( y + z )² }
Additional identities--->
1) ( a + b )² = a² + b² + 2ab
2) ( a - b )² = a² + b² - 2ab
3) ( a + b )³ = a³ + b³ + 3ab ( a + b )
4) ( a - b )³ = a³ - b³ - 3ab ( a - b )
5) a³ + b³ = ( a + b ) ( a² + b² - ab )
6) a³ - b³ = ( a - b ) ( a² + b² + ab )
#Answerwithquality&#BAL
Answer:
Step-by-step explanation:
x^4-(x-z)^4 is the given expression
let (x-z) = y
So, x^4 - y^4 = (x²)² - (y²)² = {(x²) + (y²)} {(x²) - (y²)} = {(x²) + (y²)} (x+y) (x-y)
Put the value of y into the found expression
= {(x²) + (y²)} (x+y) (x-y)
= {x²+(x-z)²} (x+x-z) (x-x+z)
= (x²+x²+z²-2xz) (2x-z) (z)
= (2x²+z²-2xz) (2x-z)(z)
^_^