Math, asked by dj12387, 11 months ago

x
purt
harte a borbvsdghhxdhj​

Attachments:

Answers

Answered by Anonymous
21

Solution

5^{2 + log_510 }

 = 5^{2}  \times  5^{ log_510}

 \tt  [  \because a^{m + n}= a^m  \times  a^n ]

 = 25  \times 10

 \tt [ \because a^{ log_an } = n  ]

 = 25  \times 10

 = 250

Hence the answer is 250.

Answered by Sharad001
141

Question :-

{ \star \: }  \large{\sf{x = { \red{5 }\: }^{2 +   \orange{log \: _{5}(10)} } } \:  \green{find }\: x} \:  \:  \\

Answer :-

  \green{\implies \:} \red{ \boxed{ \green{ \boxed{ \orange{\boxed{ \sf{ \red{x} \:  =  \green{250}}}}}}}} \:

Solution :-

We have ,

 \rightarrow \large{ \sf{x = { \red{5 }\: }^{2 +   \orange{log \: _{5}(10)} } }} \: \:  \:  \\  \\  \:  \because \large{ \boxed{\sf{  \red{ {a}^{m + n}}  =  \orange{ {a}^{m} \times   {a}^{n} }}}}\\  \\   \pink{\therefore} \\  \rightarrow \large{ \sf{  \pink{x }=  \green{ {5}^{2}}  \times  { \blue{5 \: }}^{  \red{log \: _{5}(10)} } } }\\  \\  \blue{ \because }\large{ \boxed{\sf{  {b \: }^{ log_{b}(a) } } = a} }\\  \\  \red{ \therefore }\\  \rightarrow \large{\sf{x =  \red{ 25 \times } \green{10}}} \\  \\  \rightarrow \large{ \red{ \boxed{  \blue{\boxed{ \orange{\boxed{ \sf{ \red{x} \:  =  \green{250}}}}}}}}}

___________________

Similar questions