Math, asked by ritesh201026, 1 month ago

x raise to the power m+n* x raise to the power n+l * x raise to the power l+m / (x raise to the power m * x raise to the power n * x raise to the power l)² = 1

This is the Question
please answer my question It's very urgent!​

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Given \:Question - }}

Prove that,

\rm :\longmapsto\:\dfrac{ {x}^{l + m} \times  {x}^{m + n}   \times  {x}^{n + l} }{ {( {x}^{l}  \times  {x}^{m}  \times  {x}^{n} )}^{2} }  = 1

\large\underline{\sf{Solution-}}

Consider LHS

\rm :\longmapsto\:\dfrac{ {x}^{l + m} \times  {x}^{m + n}   \times  {x}^{n + l} }{ {( {x}^{l}  \times  {x}^{m}  \times  {x}^{n} )}^{2} }

Let we first evaluate numerator,

\red{\rm :\longmapsto\:{x}^{l + m} \times  {x}^{m + n}   \times  {x}^{n + l}}

We know,

\purple{\boxed{ \bf{  {x}^{m} \times  {x}^{n} =  {x}^{m + n}}}}

So, using this identity, we get

\rm \:  =  \:  \:  {x}^{l + m + m + n + n + l}

\rm \:  =  \:  \:  {x}^{2l + 2m + 2n}

\bf\implies \:{x}^{l + m} \times  {x}^{m + n}   \times  {x}^{n + l} \:  =  \:   {x}^{2l + 2m + 2n} -  - (1)

Now, let we evaluate the denominator,

\red{\rm :\longmapsto\:{( {x}^{l}  \times  {x}^{m}  \times  {x}^{n} )}^{2}}

We know,

\purple{\boxed{ \bf{  {x}^{m} \times  {x}^{n} =  {x}^{m + n}}}}

So using this identity, we get

\rm \:  =  \:  \:  {( {x}^{l + m + n} )}^{2}

We know,

 \purple{\boxed{ \bf{  {( {x}^{m} )}^{n}  =  {x}^{mn}}}}

So, using this identity, we get

\rm \:  =  \:  \:  {x}^{2l + 2m + 2n}

\bf\implies \:{( {x}^{l}  \times  {x}^{m}  \times  {x}^{n} )}^{2} \:  =  \:  {x}^{2l + 2m + 2n}  -  -  - (2)

Now, Consider,

\bf :\longmapsto\:\dfrac{ {x}^{l + m} \times  {x}^{m + n}   \times  {x}^{n + l} }{ {( {x}^{l}  \times  {x}^{m}  \times  {x}^{n} )}^{2} }

On substituting the values from equation (1) and equation (2), we get

\rm \:  =  \:  \: \dfrac{ {x}^{2l + 2m + 2n} }{{x}^{2l + 2m + 2n}}

\rm \:  =  \:  \: 1

Hence,

\bf :\longmapsto\:\dfrac{ {x}^{l + m} \times  {x}^{m + n}   \times  {x}^{n + l} }{ {( {x}^{l}  \times  {x}^{m}  \times  {x}^{n} )}^{2} }  = 1

Additional Information :-

\boxed{ \rm{  {x}^{m}  \div  {x}^{n}  =  {x}^{m - n}}}

\boxed{ \rm{  {x}^{0} = 1}}

\boxed{ \rm{  {x}^{ - y} =  \frac{1}{ {x}^{y} }}}

Similar questions