Math, asked by Himakhi2517, 1 year ago

X=root 3 +root 2/root3-root 2 and y=root3-root2/ root 3+root2find the value of x square +y square

Answers

Answered by BEJOICE
2

x + y =  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }  +  \frac{ \sqrt{3 }  -  \sqrt{2} }{ \sqrt{3} +  \sqrt{2}  }  \\  =  \frac{ {( \sqrt{3}  +  \sqrt{2}) }^{2}  +  {( \sqrt{3} -  \sqrt{2} ) }^{2} }{( \sqrt{3} +  \sqrt{2} )( \sqrt{3}   -  \sqrt{2} )}  \\  =  \frac{6 + 4}{3 - 2}  = 10
xy =  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }  \times  \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }  = 1
 {x}^{2}  +  {y}^{2}  =  {(x + y)}^{2}  - 2xy \\  =  {10}^{2}  - 2 \times 1 = 98
Answered by aquialaska
2

Answer:

Value of x² + y²  is 98.

Step-by-step explanation:

Given:

x=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}\:\:and\:\:y=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}

To find: value of x² + y²

First we find,

x^2=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}\times\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}

=\frac{(\sqrt{3}-\sqrt{2})^2}{(\sqrt{3}+\sqrt{2})^2}

=\frac{3+2-2\sqrt{3}\sqrt{2}}{3+2+2\sqrt{3}\sqrt{2}}

=\frac{5-2\sqrt{6}}{5+2\sqrt{6}}

=\frac{5-2\sqrt{6}}{5+2\sqrt{6}}\times\frac{5-2\sqrt{6}}{5-2\sqrt{6}}

=\frac{(5-2\sqrt{6})^2}{(5+2\sqrt{6})(5-2\sqrt{6})}

=\frac{25+24-20\sqrt{6}}{25-24}  

= 49 - 20√6

y^2=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\times\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}

=\frac{(\sqrt{3}+\sqrt{2})^2}{(\sqrt{3}-\sqrt{2})^2}

=\frac{3+2+2\sqrt{3}\sqrt{2}}{3+2-2\sqrt{3}\sqrt{2}}

=\frac{5+2\sqrt{6}}{5-2\sqrt{6}}

=\frac{5+2\sqrt{6}}{5-2\sqrt{6}}\times\frac{5+2\sqrt{6}}{5+2\sqrt{6}}

=\frac{(5+2\sqrt{6})^2}{(5+2\sqrt{6})(5-2\sqrt{6})}

=\frac{25+24+20\sqrt{6}}{25-24}  

= 49 + 20√6

Now,

x² + y² = 49 - 20√6 + 49 + 20√6 = 49 + 49 = 98

Therefore, Value of x² + y² is 98.

Similar questions