Math, asked by tssuyambulingam, 1 year ago

x=rootm+n+rootm-n/rootm+n-rootm-n find nx^2-2mx+n
please help me fast
why even rational doesnt know this answer..

Answers

Answered by rational
8
x=\frac{\sqrt{m+n}+\sqrt{m-n}}{\sqrt{m+n}-\sqrt{m-n}}=\frac{(\sqrt{m+n}+\sqrt{m-n})^2}{\sqrt{m+n}^2-\sqrt{m-n}^2}=\frac{m+\sqrt{m^2-n^2}}{n}

similarly \frac{1}{x}=\frac{m-\sqrt{m^2-n^2}}{n}

Now consider the given expression
nx^2-2mx+n
Factor out x and get
x\left(nx-2m+n\cdot\frac{1}{x}\right)
=x\left(n\cdot\frac{m+\sqrt{m^2-n^2}}{n}-2m+n\cdot\frac{m-\sqrt{m^2-n^2}}{n}\right)=x\left(m+\sqrt{m^2-n^2}-2m+m-\sqrt{m^2-n^2}\right)\\=x\left(0\right)\\=\boxed{0}

tssuyambulingam: see,you are really great thank you very very very munch..
rational: yw
tssuyambulingam: what
rational: yw := You're Welcome!
Answered by kvnmurty
3
Rationalize the given expression in m and n by multiplying the denominator and number ator with the conjugate of the denominator.

x=\frac{\sqrt{m+n}+\sqrt{m-n}}{\sqrt{m+n}-\sqrt{m-n}}\\\\=\frac{(\sqrt{m+n}+\sqrt{m-n})(\sqrt{m+n}+\sqrt{m-n})}{(\sqrt{m+n}-\sqrt{m-n})(\sqrt{m+n}+\sqrt{m-n})}\\\\=\frac{(\sqrt{m+n})^2+(\sqrt{m-n})^2+2\sqrt{(m+n)(m-n)}}{(\sqrt{m+n})^2-(\sqrt{m-n})^2}\\\\=\frac{m+n+m-n+2\sqrt{m^2-n^2}}{m+n-(m-n)}\\\\=\frac{2\ m\ +\ 2\ \sqrt{m^2-n^2}}{2\ n},\ \ \ ---(1)


Let\ P(x)=nx^2-2mx+n\\\\Roots\ of\ quadratic\ equation\ nx^2-2mx+n=0,\ \ \ are:\\.\ \ \ x=\frac{2m+-\sqrt{(2m)^2-4*n*n}}{2n}=\frac{2m+-2\sqrt{m^2-n^2}}{2n},\ \ ---(2)

Comparing the value of x we have in equation (1) and the root of the quadratic expression in (2), we see that they are same.  Hence, the value of quadratic expression is zero for that value of x.

Similar questions