x=rsinAcosA y=rsinAsinC z=rcosA prove that r²=x²+y²z²(without spam)
Answers
Answered by
6
Step-by-step explanation:
Given,
x = rsinAcosC ------1
y = rsinAsinC -----2
z = rcosA -------3
squaring eq 1, 2 and 3, we get
x² = r²sin²Acos²C ----4
y² = r²sin²Asin²C -----5
z² = r²cos²A ------6
Adding 4, 5 and 6, we get,
x²+ y²+ z²= r²sin²Acos²C+ r²sin²Asin²C+ r²cos²A
x²+ y²+ z²= r²sin²A(cos²C +sin²C)+ r²cos²A
x²+ y²+ z²= r²sin²A+ r²cos²A -----[sin²∅+cos²∅=1]
x²+ y²+ z²= r²(sin²A+ cos²A)
x²+ y²+ z²= r² ------- [sin²∅+cos²∅=1]
Hence, proved.
HOPE THIS ANSWER HELPS U....
Similar questions