x sec^2 y – x^2 cos y) dy = (tan y - 3x^4) dx
Answers
Answer:
step 1: considering a simplified version, xsec2ydy=(tany−3x4)dxxsec2ydy=(tany−3x4)dx
(tany−3x4)dx−xsec2ydy=0(tany−3x4)dx−xsec2ydy=0
let M(x,y)=tany−3x4,N(x,y)=−xsec2yM(x,y)=tany−3x4,N(x,y)=−xsec2y
partial derivatives: My=sec2y,Nx=−sec2yMy=sec2y,Nx=−sec2y
My−NxN=−2xMy−NxN=−2x
let u(x)=e∫−2xdx=1x2u(x)=e∫−2xdx=1x2
considering u(x)(tany−3x4)dx−u(x)xsec2ydy=0
(1x2tany−3x2)dx−1xsec2ydy=0(1x2tany−3x2)dx−1xsec2ydy=0
(−1x)tany−x3=C(−1x)tany−x3=C
step 2: let (−1x)tany−x3=u(x,y)(−1x)tany−x3=u(x,y) then
1x2tanydx−1xsec2ydy−3x2dx=uxdx+uydy
multiple by x2x2 : tanydx−xsec2ydy−3x4dx=x2uxdx+x2uydytanydx−xsec2ydy−3x4dx=x2uxdx+x2uydy
x2cosydy=x2uxdx+x2uydy−x2cosydy=x2uxdx+x2uydy
−cosydy=uxdx+uydy−cosydy=uxdx+uydy
uxdx+uydy+cosydy=0uxdx+uydy+cos
du(x,y)+dsiny=0du(x,y)+dsin
u(x,y)+siny=Cu(x,y)+siny= C
so, the final result should be (−1x)tany−x3=C−siny(−1x)tany−x3=C−siny