Math, asked by urviminya, 11 months ago

(x sec2y - x2 cos y) dy = (tan y - 3x4) dx​

Answers

Answered by MaheswariS
5

\underline{\textbf{Given:}}

\mathsf{(x\;sec^2y-x^2\;cos\,y)dy=(tan\,y-3x^4)dx}

\underline{\textbf{To find:}}

\textsf{Solution of the given differential equation}

\underline{\textbf{Solution:}}

\textsf{We apply variable separable method to solve}

\textsf{the given differential equation}

\mathsf{Consider,}

\mathsf{(x\;sec^2y-x^2\;cos\,y)dy=(tan\,y-3x^4)dx}

\textsf{This can be written as,}

\mathsf{x\;sec^2y\;dy-x^2\;cos\,y\;dy=tan\,y\;dx-3x^4\;dx}

\mathsf{x\;sec^2y\;dy-tan\,y\;dx=x^2\;cos\,y\;dy-3x^4\;dx}

\mathsf{x\;sec^2y\;dy-tan\,y\;dx=x^2(cos\,y\;dy-3x^2\;dx)}

\mathsf{\dfrac{x\;sec^2y\;dy-tan\,y\;dx}{x^2}=cos\,y\;dy-3x^2\;dx}

\mathsf{Using,}

\boxed{\mathsf{\dfrac{d\left(\frac{u}{v}\right)}{dx}=\dfrac{v\;\dfrac{du}{dx}-u\;\dfrac{dv}{dx}}{v^2}}}

\mathsf{d\left(\dfrac{tan\,y}{x}\right)=cos\,y\;dy-3x^2\;dx}

\mathsf{Integrating,}

\displaystyle\int\mathsf{d\left(\dfrac{tan\,y}{x}\right)=\int\;cos\,y\;dy-\int\;3x^2\;dx}

\mathsf{\dfrac{tan\,y}{x}=sin\,y-3\left(\dfrac{x^3}{3}\right)+C}

\boxed{\mathsf{\dfrac{tan\,y}{x}=sin\,y-x^3+C}}

\textsf{which is the required solution}

Similar questions