Math, asked by apunhedon, 11 months ago

x sin^3 theta + y cos^3 theta = sintheta costheta and x sin theta = ycostheta prove that
x^2 + y² = 1.​

Answers

Answered by BrainlyKing5
13

Solution

• Given

\implies \mathsf{x\: { \sin(\theta) }^{3}  + y\: {\cos(\theta) }^{3} \:  =  \sin(\theta)  \cos(\theta) }

\implies \mathsf{x \sin(\theta)\:  = y \cos(\theta)}

• To prove

\longrightarrow \mathsf{x^2 + y^2 = 1}

• Proof

*To solve such questions first we will try to break LHS (As per your easiness) to a simpler form and convert it into a useful form.

Therefore Taking

\large \bold{\underline{\underline{LHS \implies}}}

\longrightarrow \mathsf{x \:  { \sin(\theta) }^{3}  + y  \: {\cos(\theta) }^{3}}

\longrightarrow \mathsf{x \:  { \sin(\theta) }^{2} \sin(  \theta)   + y  \: {\cos(\theta) }^{2} \cos( \theta) }

Now we know that,

\implies \mathsf{x \sin(\theta)\:  = y \cos(\theta)}

therefore putting this value in equation we have,

\longrightarrow \mathsf{y \cos( \theta) \:  { \sin(\theta) }^{2} + y  \: {\cos(\theta) }^{2} \cos( \theta) }

Taking y cos(0) common we have,

\longrightarrow \mathsf{y \cos( \theta) \left( { \sin(\theta) }^{2} + {\cos(\theta) }^{2}\right)}

Now By formula,

\boxed{\boxed{ \bigstar \:   \mathsf{ { \sin( \theta) }^{2}  +  { \cos( \theta) }^{2} \:  = 1 }}}

We have,

\longrightarrow \mathsf{y \cos( \theta) = \sin( \theta) \cos( \theta) }

Now taking Cos(theta) to RHS

\longrightarrow \mathsf{y \cos( \theta) = \sin( \theta) \cos( \theta) }

\longrightarrow \mathsf{y =  \dfrac{\sin( \theta) \cos( \theta)}{ \cos( \theta) } }

\longrightarrow \mathsf{y =  \sin( \theta) }

Therefore we have,

\implies \mathsf{y =  \sin( \theta) }

and

\implies \mathsf{x =  \cos( \theta) }

Therefore now putting this value we have

\longrightarrow \mathsf{x^2 + y^2 = 1}

\longrightarrow \mathsf{{\cos( \theta)}^{2} + {\sin( \theta)}^{2} = 1}

Now from the above formula we have

\longrightarrow \mathsf{1 = 1}

Thus we have,

LHS = RHS

Hence proved

Answered by RvChaudharY50
66

Question :------- we have to prove x²+y² = 1

Given :------

  • xsin³@ + y cos³@ = sin@ × cos@
  • x sin @ = y cos@

Formula to be used :---

  • sin²@ + cos²@ = 1

Solution :--------

let

xsin³@ + y cos³@ = sin@ × cos@

(x sin@)sin²@ + (ycos@)cos²@ = sin@ × cos@

since x sin@ = y cos@

putting value we get,

(ycos@)sin²@ + (ycos@)cos²@ = sin@ × cos@

Taking (ycos@) common now ,

(ycos@)[sin²@+cos²@] = sin@ × cos@

→ ycos@ = sin@ × cos@

→ y = sin@ -------------------- Equation (1)

______________________________

Now, Again putting value of (ycos@) this time we get,

(x sin@)sin²@ + (ycos@)cos²@ = sin@ × cos@

→ (x sin@)sin²@ + (xsin@)cos²@ = sin@ × cos@

Taking (x sin@) common Now,

(xsin@)(sin²@+cos²@) = sin@ × cos@

→ x sin@ = sin@ × cos@

→ x = cos@ ------------------------ Equation (2)

______________________________

Now , Squaring both Equation and adding them we get,

+ = sin²@ + cos²@

+ = 1 (Proved)

(Hope it helps you)

______________________________

\color {red}\large\bold\star\underline\mathcal{Extra\:Brainly\:Knowledge:-}

Trignometric identity :---

→ sin²θ = 1 − cos²θ

→ cos²θ = 1 − sin²θ

→ tan²θ + 1 = sec²θ

→ tan²θ = sec²θ − 1

→ cot²θ + 1 = csc²θ

→ cot²θ = csc²θ − 1

\mathcal{BE\:\:BRAINLY}

Similar questions