x sin²30° cos²60°/4 cos² 45° = 3 sin²45° + 2 cos²30°/sin²90° - 4 cos²45° .Find the value of x.
Answers
Question :- (x*sin²30°*cos²60°)/(4*cos² 45°) = (3*sin²45° + 2 cos²30°)/(sin²90° - 4*cos²45°) . Find the value of x. ?
Solution :-
we know that,
- sin 30° = (1/2)
- cos 60° = (1/2)
- cos 45° = (1/√2)
- sin 45° = (1/√2)
- cos 30° = (√3/2)
- sin 90° = 1
Solving LHS part now :-
→ (x*sin²30°*cos²60°)/(4*cos² 45°)
→ [x * (1/2)² * (1/2)²] / [4 * (1/√2)²]
→ [x * (1/4) * (1/4)] / [ 4 * (1/2) ]
→ (x/16) / 2
→ (x/16) * (1/2)
→ (x/32)
Solving RHS part now :-
→ (3*sin²45° + 2 cos²30°)/(sin²90° - 4*cos²45°)
→ [ 3 * (1/√2)² + 2 * (√3/2)² ] / [(1)² - 4 * (1/√2)²]
→ [ 3 * (1/2) + 2 * (3/4) ] / [ 1 - 4 * (1/2) ]
→ [ (3/2) + (3/2) ] / [ 1 - 2 ]
→ (6/2) / (-1)
→ 3 * (-1)
→ (-3)
therefore,
→ LHS = RHS
→ (x/32) = (-3)
→ x = (-96) (Ans.)
Learn More :-
If sino + tano = m
tano - sino an
Then express the
values of m²-n² in terms
of M and N
https://brainly.in/question/13926306
tanA/(1-cotA) + cotA/(1-tanA)
https://brainly.in/question/16775946