Math, asked by kamilmalik7773, 1 year ago

X square + 1 by x square is equals to 51 then find x minus one by x and x cube minus 1 by x cube

Answers

Answered by JoelRajjoe
12
it is a simple question
(x^2 =x square )
x^2+1/x^2 = 51
1/x^2=50
x^2=1/50
x=1/7

Answered by BrainlyKing5
23
\Large{\bold{Hey\:\;\;Mate\;\;\:Here\:\:\:Is\:\;\;Your\;\;\:Answers}}

\underline{\bold{Given}}

\bold{{x}^{2} + \frac{1}{ {x}^{2} }=51}

\bold{And\: We \:Need \:To\: Find...}

\bold{{x} - \frac{1}{x}- (Part-1)}

And

\bold{{x}^{3}-\frac{1}{{X}^{3}}-(Part-2)}

So Now Let's Move For Solution ....

\underline{\bold{Solution}}

Now According To Question It's Given That {x}^{2} + \frac{1}{ {X}^{2} } = 51

Now To Find ...

\bold{x - \frac{1}{x}}

Follow The Simple Step ...

\underline{\bold{Step-1)\:Find\:The\: Suitable\: Identity\:}}

So The MosT Suitable Identity That Can Be Used Here Is...

\boxed{\bold{{(a - b)}^{2} \:= {a}^{2} \:+ \:{b}^{2} -2ab}}

\underline{\bold{Step-2)\:Apply\: The \:Identity\: To \: Find\: Value \:Of\:\:{x}\:- \frac{1}{x} }}

Now Applying This Identity ..

Where

\underline{\bold{a\: = \:x \:\:And\: b \:= 1/x \:}}

\bold{ {(x\: - \:\frac{1}{x})}^{2} = \: {x}^{2} \:+ \:\frac{1}{ {x}^{2} } - 2(x) (\frac{1}{x} )}

That Is ...

\bold{{(x - \frac{1}{x})}^{2} = {x}^{2} + \frac{1}{ {x}^{2} } \: - 2 \: (by \: \: \: cancelling \: x)}

So Now In Question Its Given That 

\bold{ {x}^{2} + \frac{1}{ {x}^{2} }}

Now Putting This Value In the Obtained Equation We Have ...

\bold{ {(x - \frac{1}{x}) }^{2} = 51 - 2}

That Is ...

\bold{ {(x - \frac{1}{x} )}^{2} = 49}

Now Moving Square To RHS We Have 

\bold{x - \frac{1}{x} = \sqrt{49}}

That Is ...

\bold{x - \frac{1}{x} = 7}

So Now We Have Value Of 

\boxed{\bold{x - \frac{1}{x} = 7}}

\underline{\bold{Hence\:The\:Required\:Answer\:Is( Part-1)\:....}}

\boxed{\boxed{\bold{7}}}

Now Let's Move For

\underline{\bold{Part-2}}

\underline{\bold{Step -3)\:Solve\:For\:{x}^{3} -\frac {1}{{x}^{3}} }} 

Now By Identity ..

\boxed{ \bold{{(a - b)}^{3} = {a}^{3} - {b}^{3} - 3ab \: (a - b)}}

We Have ..

\bold{ {(x - \frac{1}{x})}^{3} = {x}^{3} - \frac{1}{ {x}^{3} } - 3(x)( \frac{1}{x}) \;(x - \frac{1}{x})}

That is ...

\bold{{(x - \frac{1}{x} )}^{3} = {x}^{3} - \frac{1}{ {x}^{3} } - 3(x - \frac{1}{x} )}

Now In Above Method We Have Found Value Of 

\bold{x - \frac{1}{x} = 7}

Now Putting This Value In This Obtained Equation We Have ...

\bold{ {7}^{3} = {x}^{3} - \frac{1}{ {x}^{3} } - 3(7)}

That Is ...

\bold{343 = {x}^{3} - \frac{1}{ {x}^{3} } - 21}

That is ...

\bold{343 + 21 = {x}^{3} - \frac{1}{ {x}^{3} } }

That Is ..

\bold{364 = {x}^{3} - \frac{1}{ {x}^{3} } }

Therefore Value Of 

\boxed{\bold{ {x}^{3} - \frac{1}{ {x}^{3} } = 364}}

\bold{Hence\:The\: Required\:Answer\:of \: Second \:Part \: is ...}

\boxed{\mathfrak{\bold{364} } }

\Large{\bold{Thanks...}}
Similar questions