Math, asked by mdmuneeb9534, 11 months ago

X square + 1 whole square - x square =0 find the roots

Answers

Answered by mansurijishan805
0

Step-by-step explanation:

 0= ( {( {x}^{2}) + 1 )}^{2}  -  {x}^{2}  \\ 0 =   { (({x)}^{2} } + 1)^{2}  - ( {x)}^{2}  \\ 0 = ( {x}^{2}  + 1 + x)( {x}^{2}  + 1   - {x}^{2} ) \\ 0 = ( {x}^{2}  + x + 1)(1) \\  0=  {x}^{2}  + x + 1 \\  {x}^{2}  + x + 1 = 0 \: \:  \:  match \: to \:  \\ a {x}^{2}  + bx + c = 0 \\  \:  \\ a = 1 \:  \:  \: b = 1 \:  \:  \: c = 1 \\ use \: the \: formula \: of \: find \: roots \: of \: quadratic \: equation \:  \\ \\    =  \frac{ -b \frac{ + }{ - }  \sqrt{ {b}^{2} - 4ac } }{2a}  \\  =  \frac{ - (1) \frac{ + }{ - }  \sqrt{ {(1)}^{2}  - 4(1)(1)} }{2(1)}  \\  =  \frac{ - 1 \frac{ + }{ - }  \sqrt{1 - 4} }{2}  \\  =  \frac{ - 1 \frac{ + }{ - }  \sqrt{3} }{2}  \\  =  \frac{ - 1 +  \sqrt{3} }{2}  \:  \:  \:  \:  \:  \: or \:  \:  \:  \:  \:  \:  \frac{ - 1 -  \sqrt{3} }{2}  \\  \: the \: roots \: of \: equation \: is \:  \\  \frac{ - 1  +  \sqrt{3} }{2}  \:  \:  \: and \:  \:  \:  \:  \frac{ - 1 -  \sqrt{3} }{2}

Similar questions