Math, asked by thegreatBILAL, 1 year ago

x square + 1/x square. find the value of x cube +1/x cube​


Mankuthemonkey01: question is incomplete mate

Answers

Answered by amitnrw
3

let say

 {x}^{2}   +  \frac{1}{ {x}^{2} }  = y

now to find

 {x}^{3}  +  \frac{1}{ {x}^{3} }

as we know that

 {a}^{3}  +  {b}^{3}  = (a + b)^3 - 3ab(a + b)

 {x}^{3}  +  \frac{1}{ {x}^{3} }  =  {(x +  \frac{1}{x} })^{3}  - 3(x +  \frac{1}{x} ) \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  = (x +  \frac{1}{x} ) \times  {((x +  \frac{1}{x} })^{2}  - 3)

( {x +  \frac{1}{x} })^{2}  =  {x}^{2}  +  { \frac{1}{x} }^{2}  + 2 \\  \\ ( {x +  \frac{1}{x} })^{2}  = y + 2 \\  \\ x +  \frac{1}{x}  =  \pm \sqrt{y + 2}

putting this value we can evaluate

 {x}^{3}  +  \frac{1}{{x}^{3} }

 \pm \sqrt{y + 2}  \times (y + 2 - 3) \\  \\ \pm \sqrt{y + 2}  \times (y  - 1)

Similar questions