Math, asked by vandana640, 1 year ago

x square _16 and find the zeros of the following quadratic polynomial and verify the relationship between zeros and the coefficients​

Answers

Answered by waqarsd
2

Answer:

4 , -4

Step-by-step explanation:

given \\  \\  {x}^{2}  - 16 = 0 \\  \\  {x}^{2}  + 4x  - 4x - 16 = 0 \\  \\ x(x + 4) - 4(x + 4) = 0 \\  \\ (x + 4)(x - 4) = 0 \\  \\ x _1  = 4 \\  \\ x_2 =  - 4 \\  \\ x_1 + x_2 = 0 \\  \\ x_1 \times x_2 =  - 16

for \:  \: a {x}^{2}  + bx  + c = 0 \\  \\ if \:  \:  \alpha  \: and \:  \beta  \:  \: are \: roots \:  \: then \\  \\  \alpha  +  \beta  =  -  \frac{b}{a}  \\  \\  \alpha  \times  \beta  =  \frac{c}{a}

HOPE IT HELPS

Answered by Anonymous
1

Answer:

4 , -4

Step-by-step explanation:

\begin{lgathered}given \\ \\ {x}^{2} - 16 = 0 \\ \\ {x}^{2} + 4x - 4x - 16 = 0 \\ \\ x(x + 4) - 4(x + 4) = 0 \\ \\ (x + 4)(x - 4) = 0 \\ \\ x _1 = 4 \\ \\ x_2 = - 4 \\ \\ x_1 + x_2 = 0 \\ \\ x_1 \times x_2 = - 16\end{lgathered}

\begin{lgathered}for \: \: a {x}^{2} + bx + c = 0 \\ \\ if \: \: \alpha \: and \: \beta \: \: are \: roots \: \: then \\ \\ \alpha + \beta = - \frac{b}{a} \\ \\ \alpha \times \beta = \frac{c}{a}\end{lgathered}

Similar questions