Math, asked by adsulsampada, 24 days ago

x square - 5 x + 1/5 x minus 12 = to x square minus x minus 4 upon X + 4.
NO SPAM ANSWER PLZ​

Answers

Answered by brightfive16
0

Answer:

Divide the polynomial 2x^4 -9x^3 +5x^2 + 3x-82x

4

−9x

3

+5x

2

+3x−8 by x^2 - 4 x + 1x

2

−4x+1

TO VERIFY :

The Division Algorithm for the given polynomial.

SOLUTION :

Given that divide the polynomial 2x^4 -9x^3 +5x^2 + 3x-8Given that divide the polynomial 2x^4 -9x^3 +5x^2 + 3x-82x

4

−9x

3

+5x

2

+3x−8 by x^2 - 4 x + 1x

2

−4x+1

___________________

x^2 - 4 x + 1x

2

−4x+1 ) 2x^4 -9x^3 +5x^2 + 3x-82x

4

−9x

3

+5x

2

+3x−8 ( 2x^2-x-12x

2

−x−1

2x^4-8x^3+2x^22x

4

−8x

3

+2x

2

__(-)__(+)___(-)_____________

-x^3+3x^2+3x−x

3

+3x

2

+3x

-x^3+4x^2-x−x

3

+4x

2

−x

__(+)___(-)___(+)____________

-x^2+4x-8−x

2

+4x−8

-x^2+4x-1−x

2

+4x−1

__(+)_(-)__(+)___________

-7

____________________

∴ the quotient is 2x^2-x-12x

2

−x−1 and remainder is -7

Now we ca verify the Division Algorithm

The formula for Division Algorithm is :

Dividend=quotient\times divisor+remainderDividend=quotient×divisor+remainder

Substitute the values in the formula we get

2x^4 -9x^3 +5x^2 + 3x-8=x^2 - 4 x + 1\times (2x^2-x-1)+(-7)2x

4

−9x

3

+5x

2

+3x−8=x

2

−4x+1×(2x

2

−x−1)+(−7)

=x^2(2x^2)+x^2(-x)+x^2(-1)-4x(2x^2)-4x(-x)-4x(-1)+1(2x^2)+1(-x)+1(-1)-7=x

2

(2x

2

)+x

2

(−x)+x

2

(−1)−4x(2x

2

)−4x(−x)−4x(−1)+1(2x

2

)+1(−x)+1(−1)−7

=2x^4-x^3-x^2-8x^3+4x^2+4x+2x^2-x-1-7=2x

4

−x

3

−x

2

−8x

3

+4x

2

+4x+2x

2

−x−1−7

Adding the like terms

=2x^4-9x^3+5x^2+3x-8=2x

4

−9x

3

+5x

2

+3x−8

∴ 2x^4-9x^3+5x^2+3x-8=2x^4-9x^3+5x^2+3x-82x

4

−9x

3

+5x

2

+3x−8=2x

4

−9x

3

+5x

2

+3x−8

Hence LHS = RHS

∴ the Division algorithm is verified.

Similar questions