Math, asked by aizajasani1, 9 months ago

x square-5x+3=0 by perfect square method​

Answers

Answered by theju1610
1

Answer:

do you mean completing square method then here is your answer

The expression {x}^{2}-5x+3x

2

−5x+3 fits the form a{x}^{2}+bx+cax

2

+bx+c. Let's complete the square, where:

\begin{aligned}&a=1\\&b=-5\\&c=3\end{aligned}

a=1

b=−5

c=3

2 Introduce the constant kk, which is \frac{25}{4}

4

25

in our case.

{x}^{2}-5x+\frac{25}{4}-\frac{25}{4}+3x

2

−5x+

4

25

4

25

+3

3 Use Square of Difference: {(a-b)}^{2}={a}^{2}-2ab+{b}^{2}(a−b)

2

=a

2

−2ab+b

2

.

{(x-\frac{5}{2})}^{2}-\frac{25}{4}+3(x−

2

5

)

2

4

25

+3

4 Simplify.

{(x-\frac{5}{2})}^{2}-\frac{13}{4}(x−

2

5

)

2

4

13

5 Substitute the above back into the original equation.

{(x-\frac{5}{2})}^{2}-\frac{13}{4}=0(x−

2

5

)

2

4

13

=0

6 Add \frac{13}{4}

4

13

to both sides.

{(x-\frac{5}{2})}^{2}=\frac{13}{4}(x−

2

5

)

2

=

4

13

7 Take the square root of both sides.

x-\frac{5}{2}=\pm \sqrt{\frac{13}{4}}x−

2

5

=±√

4

13

8 Simplify \sqrt{\frac{13}{4}}√

4

13

to \frac{\sqrt{13}}{\sqrt{4}}

4

13

.

x-\frac{5}{2}=\pm \frac{\sqrt{13}}{\sqrt{4}}x−

2

5

4

13

9 Since 2\times 2=42×2=4, the square root of 44 is 22.

x-\frac{5}{2}=\pm \frac{\sqrt{13}}{2}x−

2

5

2

13

10 Break down the problem into these 2 equations.

x-\frac{5}{2}=\frac{\sqrt{13}}{2}x−

2

5

=

2

13

x-\frac{5}{2}=-\frac{\sqrt{13}}{2}x−

2

5

=−

2

13

11 Solve the 1st equation: x-\frac{5}{2}=\frac{\sqrt{13}}{2}x−

2

5

=

2

13

.

x=\frac{\sqrt{13}+5}{2}x=

2

13

+5

12 Solve the 2nd equation: x-\frac{5}{2}=-\frac{\sqrt{13}}{2}x−

2

5

=−

2

13

.

x=\frac{-\sqrt{13}+5}{2}x=

2

−√

13

+5

13 Collect all solutions.

x=\frac{\sqrt{13}+5}{2},\frac{-\sqrt{13}+5}{2}x=

2

13

+5

,

2

−√

13

+5

Similar questions