Math, asked by revathraj, 1 year ago

X square minus root 2 + 1 X + root 2 = 0 find to find the zeros in completing square method​

Answers

Answered by BrainlyConqueror0901
90

Answer:

\huge{\boxed{\boxed{\underline{\sf{x=0\:and\:-1}}}}}

Step-by-step explanation:

\huge{\boxed{\underline{\mathfrak{SOLUTION-}}}}

\huge{\boxed{\boxed{\underline{\sf{COMPLETING\:SQUARE\:METHOD-}}}}}

 {x}^{2}   -  \sqrt{2}  + x +  \sqrt{2}  = 0 \\  {x}^{2}  + x = 0 \\ dividing \: both \: side \: coeficient \: of \: x \\  {x}^{2}  + x = 0 \\ both \: side \: adding \:  ({ \frac{b}{2a} })^{2}  = (  { \frac{1}{2 \times 1} })^{2}  =  \frac{1}{4}  \\  {x}^{2}  +  \frac{1}{4}  + x =  \frac{1}{4}  \\( x  +  \frac{1}{2})^{2}  =  \frac{1}{4}  \\  x +  \frac{1}{2}  =   +  - \sqrt{ \frac{1}{4} }  \\ x +  \frac{1}{2}  =  +  -  \frac{1}{2}  \\ first \: we \: take \:  +  \frac{1}{4}  \\ = ) x +  \frac{1}{2}  =  \frac{1}{2}  \\ = ) x = 0 -  -  -  -  - 1st \: zeroes \\ we \: take \frac{ - 1}{2}  \\  = )x +  \frac{1}{2}  =  \frac{ - 1}{2}  \\  = )x =  \frac{ - 1}{2}  -  \frac{1}{2}  \\ = ) x =  \frac{ - 1 - 1}{2}  \\  = )x =  \frac{ - 2}{2}  \\  = )x =  - 1 -  -  -  -  - 2nd \: zeroes

Another short method to solve:

\huge{\boxed{\boxed{\underline{\sf{MIDDLE\:TERM\:SPLITING-}}}}}

x^{2}+x=0\\take\:common\:from \:them\\x(x+1)=0\\x=0-----1st\:zeroes\\x+1=0\\x=-1-----2nd\:zeroes

\huge{\boxed{\boxed{\underline{\sf{x=0\:and\:-1}}}}}

Similar questions