x square + x - (a square + 3a + 2)=0
Answers
Answer:
a+1
Step-by-step explanation:
x
2
+x−(a
2
+3a+2)=0
view step
ax^{2}+bx+c=0
\frac{-b±\sqrt{b^{2}-4ac}}{2a}
±
x^{2}+x-\left(a^{2}+3a+2\right)=0
x
2
+x−(a
2
+3a+2)=0
view step
ax^{2}+bx+c=0
1a1b-\left(1+a\right)\left(2+a\right)c\frac{-b±\sqrt{b^{2}-4ac}}{2a}
x=\frac{-1±\sqrt{1^{2}-4\left(-\left(a+1\right)\left(a+2\right)\right)}}{2}
x=
2
−1±
1
2
−4(−(a+1)(a+2))
view step
1
x=\frac{-1±\sqrt{1-4\left(-\left(a+1\right)\left(a+2\right)\right)}}{2}
x=
2
−1±
1−4(−(a+1)(a+2))
view step
-4-\left(1+a\right)\left(2+a\right)
x=\frac{-1±\sqrt{1+4\left(a+1\right)\left(a+2\right)}}{2}
x=
2
−1±
1+4(a+1)(a+2)
view step
14\left(1+a\right)\left(2+a\right)
x=\frac{-1±\sqrt{\left(2a+3\right)^{2}}}{2}
x=
2
−1±
(2a+3)
2
view step
\left(3+2a\right)^{2}
x=\frac{-1±|2a+3|}{2}
x=
2
−1±∣2a+3∣
view step
x=\frac{-1±|2a+3|}{2}
±-1|3+2a|
x=\frac{|2a+3|-1}{2}
x=
2
∣2a+3∣−1
view step
x=\frac{-1±|2a+3|}{2}
±|3+2a|-1
x=\frac{-|2a+3|-1}{2}
x=
2
−∣2a+3∣−1
view step
x=\frac{|2a+3|-1}{2}
x=
2
∣2a+3∣−1
x=\frac{-|2a+3|-1}{2}
x=
2
−∣2a+3∣−1