Math, asked by iqra224tahreem, 1 year ago

X square + X by root 2 + 1 is equal to zero​

Answers

Answered by sivaprasath
3

Answer:

⇒ Factors :  (x + \frac{1}{2\sqrt{2}}+\frac{i\sqrt{7}}{2\sqrt{2}}) and (x + \frac{1}{2\sqrt{2}}-\frac{i\sqrt{7}}{2\sqrt{2}})

⇒ Zeroes : x = -\frac{1}{2\sqrt{2}}+\frac{i\sqrt{7}}{2\sqrt{2}} (or) x = -\frac{1}{2\sqrt{2}}-\frac{i\sqrt{7}}{2\sqrt{2}}

Step-by-step explanation:

Given :

To find the factors & zeroes of the polynomial,

x^2 + \frac{x}{\sqrt{2}} + 1 = 0

Solution :

x^2 + \frac{x}{\sqrt{2}} + 1 = 0

x^2 + (\frac{1}{2\sqrt{2}}+\frac{i\sqrt{7}}{2\sqrt{2}})x +(\frac{1}{2\sqrt{2}}-\frac{i\sqrt{7}}{2\sqrt{2}})x + 1 = 0

x(x + \frac{1}{2\sqrt{2}}+\frac{i\sqrt{7}}{2\sqrt{2}}) + (\frac{1}{2\sqrt{2}}-\frac{i\sqrt{7}}{2\sqrt{2}})(x +\frac{1}{2\sqrt{2}}+\frac{i\sqrt{7}}{2\sqrt{2}})=0

(x + \frac{1}{2\sqrt{2}}+\frac{i\sqrt{7}}{2\sqrt{2}})(x + \frac{1}{2\sqrt{2}}-\frac{i\sqrt{7}}{2\sqrt{2}})=0

⇒ Factors :  (x + \frac{1}{2\sqrt{2}}+\frac{i\sqrt{7}}{2\sqrt{2}}) ]and (x + \frac{1}{2\sqrt{2}}-\frac{i\sqrt{7}}{2\sqrt{2}})

⇒ Zeroes : x = -\frac{1}{2\sqrt{2}}-\frac{i\sqrt{7}}{2\sqrt{2}} (or) x = -\frac{1}{2\sqrt{2}}+\frac{i\sqrt{7}}{2\sqrt{2}}

Similar questions