Math, asked by unuman550, 3 months ago

x square + Y square is equal to 7 x y then prove that log x + Y divided by 3 is equal to 1 by 2 log x + log y​

Answers

Answered by mathdude500
6

\begin{gathered}\begin{gathered}\bf \:Given - \begin{cases} &\sf{ {x}^{2} +  {y}^{2}   = 7xy }  \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf \: To \: prove - \begin{cases} &\sf{log(\dfrac{x + y}{3} )  = \dfrac{1}{2}  log(xy) }  \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\Large{\bold{\green{\underline{Formula \:  Used \::}}}}  \end{gathered}

(1). \:  \boxed{ \green{ \bf \: {(x + y)}^{2} =  {x}^{2}   + 2xy +  {y}^{2}  }}

(2). \:  \boxed{ \green{ \bf \: log(x) +  log(y)  =  log(xy)   }}

(3). \:  \boxed{ \green{ \bf \:  log( \alpha )  - log( \beta )   = log(\dfrac{ \alpha }{ \beta } )  }}

(4). \:  \boxed{ \green{ \bf \:  log( { \alpha }^{ \beta } ) =  \beta  log( \alpha )  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

  \large \underline{\tt \:  \red{ According  \: to  \: statement }}

\tt \longmapsto\: {x}^{2}  +  {y}^{2}  = 7xy

Adding 2xy on both sides, we get

\tt \longmapsto\: {x}^{2}  +  {y}^{2}  + 2xy = 7xy + 2xy

\tt \longmapsto\: {(x + y)}^{2}  = 9xy

Now, Taking log on both sides, we get

\tt \longmapsto\: log{(x + y)}^{2}  =  log(9xy)

\tt \longmapsto\:2 log(x + y)  =  log(9)  +  log(x)  +  log(y)

\tt \longmapsto\:2 log(x + y)  =  log( {3}^{2} )  +  log(x)  +  log(y)

\tt \longmapsto\:2 log(x + y)  =  2log(3)  +  log(x)  +  log(y)

\tt \longmapsto\:2 log(x + y) - 2log(3)   =   log(x)  +  log(y)

\tt \longmapsto\:2 (log(x + y)  - log(3) ) =  log(x)  +  log(y)

\tt \longmapsto\:2 log(\dfrac{x + y}{3} )  =  log(xy)

\rm :\implies\: log(\dfrac{x + y}{3} )  = \dfrac{1}{2}  log(xy)

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions