Physics, asked by hatim3945, 9 months ago

X=(t+2)-1acceleration and velocity me relation

Answers

Answered by Anonymous
6

AnswEr :

Given that,

 \sf \: x =  {(t + 2)}^{ - 1}

We have to find out the relation between Velocity and Acceleration

Differentiating x w.r.t t,we get velocity :

 \sf \: v =  \dfrac{dx}{dt}  \\  \\  \longrightarrow \:  \sf \: v =  \dfrac{d \bigg( (t + 2) {}^{  - 1} \bigg)}{dt}  \\  \\  \longrightarrow \:  \sf \: v =  - (t + 2) {}^{ - 2}  -  -  -  -  -  - (1)

Differentiating a w.r.t t,we get :

 \sf \: a =  \dfrac{dv}{dt}  \\  \\  \longrightarrow \:  \sf \: a = -   \dfrac{d \bigg( (t + 2) {}^{  - 2} \bigg)}{dt}  \\  \\  \longrightarrow \:  \sf \: a=   (t + 2) {}^{ - 3}  -  -  -  -  -  -  - (2)

Comparing equations (1) and (2),

 \sf \: a =  -  \bigg( - (t + 2) {}^{ - 3}  \bigg) \\  \\  \dashrightarrow \:  \sf \: a = -  \bigg( -  (t + 2) {}^{ -2 }  \bigg) \bigg((t  + 2) {}^{ - 1}  \bigg) \\  \\  \dashrightarrow \:  \sf \: a =  - v(t + 2) {}^{ - 1}  \\  \\  \dashrightarrow \boxed{ \boxed{  \sf \: a =  - vx}} \:

Answered by Vamprixussa
8

Given

x = (t-2)^{-1}

b) Velocity

Velocity is the rate of change of displacement.

\sf Velocity = \dfrac{Displacement }{Time}

\implies \sf v = \sf \dfrac{dx}{dt}

\implies \sf  v = \dfrac{d( (t-2)^{-1}))}{dt}

\implies \boxed{\boxed{\bold{\sf v = - (t-2)^{-1}}}}}}

a) Acceleration

Acceleration is the rate of change of velocity

\sf Acceleration = \dfrac{Velocity }{Time}

\implies \sf a = \dfrac{dv}{dt}

\implies \sf  a = \dfrac{d( (t-2)^{-2}))}{dt}

\implies \boxed{\boxed{\bold{\sf a = - (t+2)^{-2}}}}}}

Comparing, we get,

\sf a = -(- (t-2)^{-3}})

\sf a = -(- (t+2)^{-2})((t+2)^{-1}

\sf a = -v(t+2)^{-1}

\boxed{\boxed{\bold{a=vx}}}}}

                                                           

Similar questions