∫ x tan − 1 x from 0 to 1
Answers
Answered by
0
Let I=∫xtan
−1
xdx
Taking tan
−1
x as first function and x as second function and integrating by parts, we obtain
I=tan
−1
x∫xdx−∫{(
dx
d
tan
−1
x)∫xdx}dx
=tan
−1
x(
2
x
2
)−∫
1+x
2
1
⋅
2
x
2
dx
=
2
x
2
tan
−1
x
−
2
1
∫
1+x
2
x
2
dx
=
2
x
2
tan
−1
x
−
2
1
∫(
1+x
2
x
2
+1
−
1+x
2
1
)dx
=
2
x
2
tan
−1
x
−
2
1
∫(1−
1+x
2
1
)dx
=
2
x
2
tan
−1
x
−
2
1
(x−tan
−1
x)+C
=
2
x
tan
−1
x−
2
x
+
2
1
tan
−1
x+C
PLEASE MARK ME AS A BRAINLEAST ANSWER
Similar questions