Math, asked by kartikeythakur, 8 months ago

x-tant
is equal to :
x-sinx
7 )limx-0
A)0
B)3​

Attachments:

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \lim_{x \rarr0 } ( \frac{x -  \tan(x) }{x -  \sin(x) } )

Since, it is 0/0 from, so using l'hospital rule

 \lim_{x \rarr0 } \frac{ \frac{d}{dx}(x -  \tan(x)  )}{ \frac{d}{dx} (x -  \sin(x)) }

 = \lim_{x \rarr0 } \frac{1 -  \sec ^{2} (x) }{1 -  \cos(x) }

 =   - \lim_{x \rarr0 } \frac{( 1 - \cos ^{2} (x)) }{ \cos^{2} (x)( 1 -  \cos(x)) }

 =  - \lim_{x \rarr0 } \frac{(1 + \cos(x))(1 -  \cos(x)) }{ \cos^{2} (x)(1 -  \cos(x))  }

 =  - \lim_{x \rarr0 } \frac{1 +  \cos(x) }{ \cos^{2} (x) }

 =  -  \frac{1 + 1}{1}  =  - 2

Similar questions