Physics, asked by ashokapr2266, 10 months ago

X= tcost , y= t+sint find dx/dy at t=pi/2

Answers

Answered by Rohit18Bhadauria
13

Given:

x= tcost

y= t+sint

To Find:

Value of \rm{\dfrac{dx}{dy}} at \rm{t=\dfrac{\pi}{2}}

Solution:

Firstly, we have to differentiate x with respect to t

On differentiating x w.r.t. t, we get

\longrightarrow\rm{\dfrac{dx}{dt}=t(-sint)+cost(1)}

\longrightarrow\rm{\dfrac{dx}{dt}=-tsint+cost}-----(1)

Now, we have to differentiate y with respect to t

On differentiating y w.r.t. t, we get

\longrightarrow\rm{\dfrac{dy}{dt}=1+cost}-----(2)

On dividing (1) by (2), we get

\longrightarrow\rm{\dfrac{\dfrac{dx}{\cancel{dt}}}{\dfrac{dy}{\cancel{dt}}}=\dfrac{-tsint+cost}{1+cost} }

\longrightarrow\rm{\dfrac{dx}{dy}=\dfrac{-tsint+cost}{1+cost}}

Now, on putting value of t in above equation, we get

\longrightarrow\rm{\bigg(\dfrac{dx}{dy}\bigg)_{t=\frac{\pi}{2}}=\dfrac{-\dfrac{\pi}{2}(sin\dfrac{\pi}{2})+cos\dfrac{\pi}{2}}{1+cos\dfrac{\pi}{2}}}

\longrightarrow\rm{\bigg(\dfrac{dx}{dy}\bigg)_{t=\frac{\pi}{2}}=\dfrac{-\dfrac{\pi}{2}(1)+0}{1+0}}

\longrightarrow\rm{\bigg(\dfrac{dx}{dy}\bigg)_{t=\frac{\pi}{2}}=\dfrac{-\dfrac{\pi}{2}}{1}}

\longrightarrow\rm\green{\bigg(\dfrac{dx}{dy}\bigg)_{t=\frac{\pi}{2}}=-\dfrac{\pi}{2}}

Formulae to Remember

\longrightarrow\rm{\dfrac{d}{dx}(x^{n})=nx^{n-1}}

\longrightarrow\rm{\dfrac{d}{dx}(sinx)=cosx}

\longrightarrow\rm{\dfrac{d}{dx}(cosx)=-sinx}

\longrightarrow\rm{\dfrac{d}{dx}(tanx)=sec^{2}x}

\longrightarrow\rm{\dfrac{d}{dx}(cotx)=-cosec^{2}x}

\longrightarrow\rm{\dfrac{d}{dx}(secx)=secx.tanx}

\longrightarrow\rm{\dfrac{d}{dx}(cosecx)=-cosecx.cotx}

\longrightarrow\rm{\dfrac{d}{dx}(ln\:x)=\dfrac{1}{x}}

\longrightarrow\rm{\dfrac{d}{dx}(e^{x})=e^{x}}

\longrightarrow\rm{\dfrac{d}{dx}(f(x))=f'(x)}

Answered by AdorableMe
23

GIVEN :-

\sf{x = t . cos(t)}

\sf{y = t + sin(t)}

\sf{t=\dfrac{\pi}{2} }

TO EVALUATE :-

\sf{\dfrac{dx}{dy} }

SOLUTION :-

\sf{\dfrac{dx}{dt}=\dfrac{d}{dt}[tcos(t)]}

\sf{\implies \dfrac{dx}{dt}=\dfrac{d}{dt}(t).cos(t)+t.\dfrac{d}{dt}[cos(t)]  }

\displaystyle{\sf{\implies \frac{dx}{dt}=1.cos(t)+t[-sin(t)] }}\\\\\displaystyle{\sf{\implies \frac{dx}{dy}=cos(t)-tsin(t) }}

\rule{150}2

\displaystyle{\sf{\frac{dy}{dt}=\frac{d}{dt}[t+sin(t)]  }}

\displaystyle{\sf{\implies \frac{dy}{dt}=\frac{d}{dt}(t)+\frac{d}{dt}[sin(t)]   }}\\\\\displaystyle{\sf{\implies \frac{dy}{dt}=1+cos(t) }}

\rule{150}2

\displaystyle{\sf{Now,}}

\displaystyle{\sf{\frac{dx}{dy} =\frac{dx}{dt}\div \frac{dy}{dt}  }}\\\\\boxed{\displaystyle{\sf{\implies \frac{dx}{dy}=\frac{cos(t)-tsin(t)}{1+cos(t)}  }}}

\textsf{Now putting the value of t as }\sf{\dfrac{\pi}{2} :- }

\displaystyle{\sf{\implies \frac{dx}{dy}=\frac{cos(\frac{\pi}{2} )-tsin(\frac{\pi}{2} )}{1+cos(\frac{\pi}{2} )}  }}

\displaystyle{\sf{\implies \frac{dx}{dy}=\frac{0 -t \times 1}{1+0}  }}

\displaystyle{\sf{\implies \frac{dx}{dy}=\frac{-t}{1}  }}

\underline{\underline{\boxed{\boxed{\displaystyle{\sf{\implies \frac{dx}{dy}=-t=\frac{-\pi}{2}   }}}}}}

\rule{150}2

\underline{\sf{Formulas\ applied\ :-}}

\bullet\ \textsf{Product rule :-}\sf{[a(x)+b(y)]'=a'(x).b(x)+a(y)+b'(y)}

\bullet\ \textsf{Differentiation of a variable is 1.}

\bullet\ \textsf{Differentiation of sin(x) is cos(x).}

\bullet\ \textsf{Differentiation of cos(x) is -sin(x).}

Similar questions