Math, asked by lalitakumari1075, 5 hours ago

x =
2 +  \sqrt{3}
Find x⁵ + 1/x⁵​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:x = 2 +  \sqrt{3}

So, Consider

\rm :\longmapsto\:\dfrac{1}{x}

\rm \:  =  \: \dfrac{1}{2 +  \sqrt{3} }

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{1}{2 +  \sqrt{3} }  \times \dfrac{2 -  \sqrt{3} }{2 -  \sqrt{3} }

We know,

\rm :\longmapsto\:\boxed{\tt{ (x + y)(x - y) =  {x}^{2} -  {y}^{2}}}

So, using this, we get

\rm \:  =  \: \dfrac{2 -  \sqrt{3} }{ {2}^{2} -  {( \sqrt{3} )}^{2}  }

\rm \:  =  \: \dfrac{2 -  \sqrt{3} }{4 - 3}

\rm \:  =  \: \dfrac{2 -  \sqrt{3} }{1}

\rm \:  =  \: 2 -  \sqrt{3}

\rm\implies \:\boxed{\tt{  \frac{1}{x} = 2 -  \sqrt{3}}}

Now, Consider

\rm :\longmapsto\:x + \dfrac{1}{x}  = 2 +  \sqrt{3} + 2 -  \sqrt{3} = 4

So, we have

\rm :\longmapsto\:\boxed{\tt{ x + \dfrac{1}{x} = 4}} -  -  - (1)

On squaring both sides, we get

\rm :\longmapsto\: {\bigg[x + \dfrac{1}{x} \bigg]}^{2} = 16

\rm :\longmapsto\: {x}^{2} + \dfrac{1}{ {x}^{2} } + 2 \times x \times \dfrac{1}{x} = 16

\rm :\longmapsto\: {x}^{2} + \dfrac{1}{ {x}^{2} } + 2  = 16

\rm :\longmapsto\: {x}^{2} + \dfrac{1}{ {x}^{2} } = 16 - 2

\rm :\longmapsto\: \boxed{\tt{ {x}^{2} + \dfrac{1}{ {x}^{2} } = 14}} -  -  - (2)

Now, Consider

\rm :\longmapsto\: {x}^{3} + \dfrac{1}{ {x}^{3} }

\rm \:  =  \:  {\bigg[x + \dfrac{1}{x} \bigg]}^{3} - 3\bigg[x + \dfrac{1}{x} \bigg]

\rm \:  =  \:  {(4)}^{3} - 3 \times 4

\rm \:  =  \: 64 - 12

\rm \:  =  \: 52

So,

\rm\implies \:\boxed{\tt{  {x}^{3} + \dfrac{1}{ {x}^{3} } = 52}} -  -  -  - (3)

On multiply equation (2) by (3), we get

\rm :\longmapsto\:\bigg( {x}^{2} +  \dfrac{1}{ {x}^{2} } \bigg) \times \bigg( {x}^{3}  + \dfrac{1}{ {x}^{3} } \bigg) = 14 \times 52

\rm :\longmapsto\: {x}^{5} + \dfrac{1}{x} + x + \dfrac{1}{ {x}^{5} } = 728

\rm :\longmapsto\: {x}^{5} + 4 + \dfrac{1}{ {x}^{5} } = 728

\rm :\longmapsto\: {x}^{5} + \dfrac{1}{ {x}^{5} } = 728 - 4

\rm :\longmapsto\: {x}^{5} + \dfrac{1}{ {x}^{5} } = 724

Hence,

\rm\implies \: \underbrace{\boxed{\tt{ \:  \:  \:  \: {x}^{5} +  \frac{1}{ {x}^{5} } = 724 \:  \:  \:  \:  \:  \: }}}

Similar questions