Math, asked by yash8011, 1 year ago

x
  prove \: that \: (\frac{x ^{a} }{x ^{b} }) {?}^{a ^{2}  + ab + b ^{2} }  \times (  \frac{x {}^{b} }{x {}^{c} } ) {} {?}^{b {}^{2}  + bc + c {}^{2} }  \times ( \frac{x {}^{c} }{x {}^{a} } ) {?}^{c {}^{2}  + ca + a {}^{2} }  = 1
prove that

Answers

Answered by Anonymous
1

 ({ \frac{ {x}^{a} }{ {x}^{b} } })^{ {a}^{2}  + ab +  {b}^{2} }  \times  ({ \frac{ {x}^{b} }{ {x}^{c} } })^{ {b}^{2}  + bc +  {c}^{2} } \times  ({ \frac{ {x}^{c} }{ {x}^{a} } })^{ {c}^{2}  + ac +  {a}^{2} }   = 1 \\  {x}^{(a - b)( {a}^{2}  + ab +  {b}^{2} )}  \times  {x}^{(b - c)( {b}^{2}  + bc +  {c}^{2}) }  \times  {x}^{(c - a)( {c}^{2}  + ac +  {a}^{2} )}  = 1 \\  {x}^{( {a}^{3} -  {b}^{3} ) }  \times  {x}^{ ({b}^{3} -  {c}^{3} )}  \times  {x}^{ ({c}^{3} -  {a}^{3})  }  = 1 \:  \:  \:  \: (  \:  \: {x}^{3}  -  {y}^{3}  = (x - y)( {x}^{2}  + xy +  {y}^{2} ) \:  \: ) \\  {x}^{ ({a}^{3}  -  {b}^{3}  +  {b}^{3} -  {c}^{3}  +  {c}^{3}   -  {a}^{3}) }  = 1 \:  \:  \:  \: ( \:  \:  {x}^{a}  \times  {x}^{b}  =  {x}^{a + b}  \:  \:  \: ) \\  {x}^{0}  = 1 \\ 1 = 1
Similar questions