Math, asked by Vatsal2405, 7 months ago

xx^{2}+2\sqrt{2}-6 find zeros

Answers

Answered by prince5132
7

CORRECT QUESTION :-

★ Find zeros of quadratic polynomial x² + 2√2x - 6.

GIVEN :-

  • Quadratic polynomial x² + 2√2x - 6.

TP FIND :-

  • The zeros .

SOLUTION :-

  \\ \\ : \implies \displaystyle \sf \: x ^{2}   +  2 \sqrt{2} x - 6 = 0 \\  \\  \\

  : \implies \displaystyle \sf \: x ^{2}  + 3 \sqrt{2} x -  \sqrt{2x}  - 6 = 0 \\  \\  \\

  : \implies \displaystyle \sf x \bigg(x + 3 \sqrt{2}  \bigg) -  \sqrt{2}  \bigg(x + 3 \sqrt{2}  \bigg) = 0 \\  \\  \\

  : \implies \displaystyle \sf  \bigg(x -  \sqrt{2}  \bigg) \bigg(x + 3 \sqrt{2}  \bigg) = 0 \\  \\  \\

: \implies \displaystyle \sf  x -  \sqrt{2}  = 0  \: , \: x + 3 \sqrt{2}  = 0 \\  \\  \\

: \implies \displaystyle \sf  x  = 0 +  \sqrt{2}    \: , \: x  =  0 - 3 \sqrt{2}   \\  \\  \\

: \implies  \underline{\boxed{ \displaystyle \sf x =  \sqrt{2}  \:  , \: x \:  =  - 3 \sqrt{2} }} \\  \\

\therefore\underline {\displaystyle \sf Zeros \  are \:  \sqrt{2} \:  and \:  - 3 \sqrt{2}  .} \\  \\

Answered by Anonymous
5

Correct Question :-

Find the zeroes of polynomial :- \large\sf{ {x}^{2}  + 2 \sqrt{2} x - 6}.

Solution :-

As per Question,

We are given with an expression and we have to find its zeroes.

So, Solution :-

\implies \: \sf{ {x}^{2}  + 2 \sqrt{2} x - 6}

 \implies\sf{ {x}^{2}  + 3 \sqrt{2} x -  \sqrt{2} x - 6}

\implies\sf{x(x + 3 \sqrt{2} ) -  \sqrt{2} (x + 3 \sqrt{2} )}

\implies\sf{(x -  \sqrt{2}) ( x + 3 \sqrt{2} )}

Now, Its Zeroes :-

(1) \sf{\: x -  \sqrt{2}  = 0} \\  \\ \implies\boxed{\bf\red{ \: x  \: =   \: \sqrt{2} }}

(2) \sf{\: x + 3 \sqrt{2}  = 0} \\  \\ \implies\boxed{\bf\red{x = -3 \sqrt{2} }}

Similar questions