Math, asked by mayankchoudhary2500, 6 months ago

x
 {x}^{2}  - 7x + 3 = 0
-7x+3=0

Answers

Answered by sbisht0880
1

Answer:

are you like to being make my friend

Answered by IIMrReporterII
2

\huge{❥}\:{\mathtt{{\purple{\boxed{\tt{\pink{\red{A}\pink{n}\orange{s}\green{w}\blue{e}\purple{r᭄}}}}}}}}❥

 \large \bold{ {x}^{2} - 7x + 3 = 0 }

Deviding by 2

 \bold{\frac{2x^{2}  - 7x + 3}{2} =  \frac{0}{2} }

 \bold{\frac{ {2x}^{2} }{2}  -  \frac{7x}{2}  -  \frac{3}{2}  =  \frac{0}{2}}

 \bold{ \frac{ \cancel{2}x^{2} }{ \cancel{2}}  -  \frac{7x}{2}  +  \frac{3}{2}   =  \frac{0}{2} }

 \bold{ {x}^{2}  -  \frac{7x}{2}  +  \frac{3}{2}  = 0}

We know that,

  \bold{ {(a + b)}^{2} =  {a}^{2}  - 2ab +  {b}^{2} }

Here a = x and

 \bold{  - 2ab =  \frac{ - 7x}{2} }

\bold{  - 2xb =  \frac{ - 7x}{2} }

 \bold{b =   \frac{ - 7x}{2( - 2x)} }

 \bold{b =  \frac{7}{4} }

Now, in our equation is

 \bold{ {x}^{2}  -  \frac{7x}{2}  +  \frac{3}{2} } = 0

 \bold{Adding   \:  And  \:  \: Subtracting} ( \frac{7}{4} )^{2}

 \bold{x^{2} -  \frac{7x}{2} +  \frac{3}{2}  } +  \bold{( \frac{7}{4} )^{2}  - ( \frac{7}{4} )^{2}  = 0}

 \bold{ {x}^{2} + ( \frac{7}{4}  )^{2}  -  \frac{7x}{2}  +  \frac{3}{2} - ( \frac{7}{4})^{2}   = 0  }

 \bold{(x -  \frac{7}{4})^{2} +  \frac{3}{2} - ( \frac{7}{4} )^{2} = 0   }

 \bold{(x -  \frac{7}{4})^{2} +  \frac{3}{2} - \frac{49}{16} = 0   }

\bold{(x -  \frac{7}{4})^{2} +  \frac{3(8) - 49}{16}   = 0}

\bold{(x -  \frac{7}{4})^{2} +  \frac{24- 49}{16}   = 0}

\bold{(x -  \frac{7}{4})^{2}  -  \frac{25}{16}   = 0}

\bold{(x -  \frac{7}{4})^{2}   =   \frac{25}{16} }

\bold{(x -  \frac{7}{4})^{2}   =  ( \frac{5}{4})^{2} }

\bold{x -  \frac{7}{4}  =  ± \frac{5}{4} }

 \bold{x -  \frac{7}{4}  =  \frac{5}{4} }

 \bold{x =  \frac{5}{4} +  \frac{7}{4}  }

 \bold{x =  \frac{5 + 7}{4} }

\bold{x =  \frac{ \cancel{12}}{ \cancel{4}} }

 \bold{x = 3}

 \bold{x -  \frac{7}{4}  =  \frac{ - 5}{4} }

 \bold{x =  \frac{ - 5}{4} +  \frac{7}{4}  }

 \bold{ x = \frac{ - 5 + 7}{4} }

 \bold{x =  \frac{ \cancel2}{ \cancel4} }

 \bold{x =  \frac{1}{2} }

HENCE,

 \huge \bold{x = 3 \: and \: x =  \frac{1}{2} }

_______________________________________

 \huge \sf \color{red}\longrightarrow\color{black}{MrReporter}

Similar questions