x
![x = 9 - 4 \sqrt{5 \: } find \: {x }^{2} + \frac{1}{x {}^{2} } x = 9 - 4 \sqrt{5 \: } find \: {x }^{2} + \frac{1}{x {}^{2} }](https://tex.z-dn.net/?f=x+%3D+9+-+4+%5Csqrt%7B5+%5C%3A+%7D+find+%5C%3A++%7Bx+%7D%5E%7B2%7D++%2B+++%5Cfrac%7B1%7D%7Bx+%7B%7D%5E%7B2%7D+%7D+)
Answers
Answered by
4
Answer:
Hope you liked my answer plz mark my answer brainliest ✌
Attachments:
![](https://hi-static.z-dn.net/files/d0b/4e60ef0f05361b45eed7e9e0736e6952.jpg)
Answered by
182
Question :--- if x = 9 - 4√5 , find (x² + 1/x²) = ?
Solution :---
→ x = (9-4√5)
→ 1/x = 1/(9-4√5)
Rationalizing the RHS part now ,
→ 1/x = 1/(9 - 4√5) * (9+4√5)/(9+4√5)
using (a+b)(a-b) = a² - b² in Denominator now,
→ 1/x = (9 + 4√5) / (9² - (4√5)²)
→ 1/x = (9+4√5) / (81-80)
→ 1/x = (9+4√5)
So ,
→ x + 1/x = (9-4√5) + (9-4√5)
→ x + 1/x = 18
Squaring both sides now we get,
→ (x+1/x) ² = (18)²
using (a+b)² = a² + b² +2ab in LHS,
→ x² + 1/x² + 2 * x * 1/x = 324
→ x² + 1/x² + 2 = 324
→ x² + 1/x² = 324 - 2
→ x² + 1/x² = 322 (Ans) .
Similar questions