Math, asked by rinkigarg9823, 1 year ago

x upon 3 -3 upon x the whole 3

Answers

Answered by mysticd
0

Answer:

\left(\frac{x}{3}-\frac{3}{x}\right)^{3}\\= \frac{x^{3}}{27}-x+\frac{9}{x}-\frac{27}{x^{3}}

Step-by-step explanation:

\left(\frac{x}{3}-\frac{3}{x}\right)^{3}

=\left(\frac{x}{3}\right)^{3}-3\times \left(\frac{x}{3}\right)^{2}\times \left(\frac{3}{x}\right)+ 3\times \left(\frac{x}{3}\right)\times \left(\frac{3}{x}\right)^{2} - \left(\frac{3}{x}\right)^{3}

/* By algebraic identity:

(a-b)³ = -3a²b+3ab²-b³ */

= \frac{x^{3}}{27}-x+\frac{9}{x}-\frac{27}{x^{3}}

Therefore,

\left(\frac{x}{3}-\frac{3}{x}\right)^{3}\\= \frac{x^{3}}{27}-x+\frac{9}{x}-\frac{27}{x^{3}}

•••♪

Answered by muscardinus
0

The value of (\dfrac{x}{3}-\dfrac{3}{x})^3 is  \dfrac{x^3}{27}-x+\dfrac{9}{x}-\dfrac{27}{x^3}.

Step-by-step explanation:

We need to solve the given expression i.e.

(\dfrac{x}{3}-\dfrac{3}{x})^3

It can be done using identity : (a-b)^3=a^3 - 3a^2b + 3ab^2 - b^3

We have,

a=\dfrac{x}{3}\\\\b=\dfrac{3}{x}

So,

(\dfrac{x}{3}-\dfrac{3}{x})^3=(\dfrac{x}{3})^3-3\times (\dfrac{x}{3})^2\times \dfrac{3}{x}+3\times \dfrac{x}{3}\times (\dfrac{3}{x})^2-(\dfrac{3}{x})^3\\\\=\dfrac{x^3}{27}-x+\dfrac{9}{x}-\dfrac{27}{x^3}

So, the value of (\dfrac{x}{3}-\dfrac{3}{x})^3 is  \dfrac{x^3}{27}-x+\dfrac{9}{x}-\dfrac{27}{x^3}.

Learn more,

Algebraic identity

https://brainly.in/question/5641876

Similar questions