Math, asked by nikitachaudhary112, 9 months ago

x upon 3 - y upon 7=7 & 4x upon 5 + y upon 2=5 by substitution method​

Answers

Answered by Anonymous
13

Solution :

\bf{\orange{\underline{\bf{Given\::}}}}

\sf{\dfrac{x}{3} -\dfrac{y}{7} =7\:\:\:\:\:\:\:\& \:\:\:\:\:\dfrac{4x}{5} +\dfrac{y}{2} =5}

\bf{\orange{\underline{\bf{To\:find\::}}}}

The value of x and y.

\bf{\orange{\underline{\bf{Explanation\::}}}}

\bullet\sf{\dfrac{x}{3} -\dfrac{y}{7} =7..........................(1)}\\\\\bullet\sf{\dfrac{4x}{5} +\dfrac{y}{2} =5..........................(2)}

\underline{\underline{\bf{Using\:Substitution\:Method\::}}}}}

From equation (1),we get;

\longrightarrow\sf{\dfrac{x}{3} -\dfrac{y}{7} =7}\\\\\\\longrightarrow\sf{\dfrac{7x-3y}{21} =7}\\\\\\\longrightarrow\sf{7x-3y=147}\\\\\\\longrightarrow\sf{7x=147+3y}\\\\\\\longrightarrow\sf{x=\dfrac{147+3y}{7} ......................(3)}

Putting the value of x in equation (2),we get;

\longrightarrow\sf{\dfrac{4x}{5} +\dfrac{y}{2} =5}\\\\\\\longrightarrow\sf{\dfrac{8x+5y}{10} =5}\\\\\\\longrightarrow\sf{8x+5y=50}\\\\\\\longrightarrow\sf{8\bigg(\dfrac{147+3y}{7}\bigg) +5y=50}\\\\\\\longrightarrow\sf{\dfrac{1176+24y}{7} +5y=50}\\\\\\\longrightarrow\sf{1176+24y+35y=350}\\\\\\\longrightarrow\sf{1176+59y=350}\\\\\\\longrightarrow\sf{59y=350-1176}\\\\\\\longrightarrow\sf{59y=-826}\\\\\\\longrightarrow\sf{y=-\cancel{\dfrac{826}{59} }}\\\\\\

\longrightarrow\sf{\pink{y=-14}}

Putting the value of y in equation (3),we get;

\longrightarrow\sf{x=\dfrac{147+3(-14)}{7} }\\\\\\\longrightarrow\sf{x=\dfrac{147+(-42)}{7} }\\\\\\\longrightarrow\sf{x=\dfrac{147-42}{7} }\\\\\\\longrightarrow\sf{x=\cancel{\dfrac{105}{7} }}\\\\\\\longrightarrow\sf{\pink{x=15}}

Thus;

The value of x is 15 and y is -14 .

Answered by VishnuPriya2801
12

Answer:-

Given :

 \frac{x}{3}  -  \frac{y}{7}  = 7 \\  \\

Taking LCM,

 \frac{7x - 3y}{21}  = 7 \\  \\ → 7x - 3y = 7(21) \\  \\ → 7x = 147 + 3y \\  \\ → x =  \frac{147 + 3y}{7}    \:  \:  -  \: equation \: (1).

And,

 \frac{4x}{5}  +  \frac{y}{2}  = 5 \\  \\   → \frac{8x + 5y}{10}  = 5 \\  \\→  8x + 5y = 50

Substitute the value of "x" here.

8( \frac{147 + 3y}{7} ) + 5y = 50 \\  \\  → \frac{1176 + 24y + 35y}{7}  = 50 \\  \\→  1176 + 59y = 350 \\  \\ → 59y = 350 - 1176 \\  \\ → 59y =  - 826 \\  \\ → y =  \frac{ - 826}{59}  \\  \\→  y =  - 14

Substitute "y" value in equation (1).

→ x =  \frac{147 + 3y}{7}   \\  \\→ x =  \frac{147 + 3( - 14)}{7}  \\  \\→  x =  \frac{147 - 42}{7}  \\  \\→ x =  \frac{105}{7}  \\  \\ → x = 15

Therefore , the values of x and y are 15 & - 14.

Similar questions