Math, asked by singhsushila244, 9 months ago

x (x-1)=1 quadratic formula

Answers

Answered by jyotigupta64
13

Step-by-step explanation:

x(x - 1) = 1 \\    \\  {x}^{2}  - x = 1 \\  \\ it \: can \: be \: rewritten \: as \\  \\  {x}^{2}  - x - 1 = 0 \\ general \: quadratic \: formula \:  \\ is \: a {x}^{2}   + bx + c

✌✌hey mate.. this is ur answer..

hope it helps you please mark me as brainliest

Answered by ThakurRajSingh24
6

Explanation :-

  \implies\tt{x(x - 1) = 1}

\implies\tt \: x {}^{2}  - x = 1

\implies\tt \: x {}^{2}  - x - 1 = 0

 \tt \:  \: On \: \:  comparing \: \:  with \:  \:  \red{ax {}^{2}  + bx + c = 0}\:  \: we \:  \: get,

 \implies \tt \: a \:  = 1 \:  \: ,b  =  - 1 \:  \: ,c =  - 1

As we know that,

  \dag \: \tt \: { \boxed{ \tt{ \red{x =  \frac{ - b±\sqrt{b {}^{2} - 4ac }  }{2a} }}}}

[ Put the values ]

 \implies \:  \tt \: x =  \frac{ \: - ( - 1)±\sqrt{( - 1) {}^{2} - 4 \times 1 \times ( - 1) } }{2  \times 1}

 \implies \tt \: x =  \frac{1±\sqrt{1 + 4} }{2}

 \implies  \tt \: x =  \frac{1± \sqrt{5} }{2}

 { \boxed{ \blue{\tt \:  \huge \: x =  \frac{ 1 -  \sqrt{5} }{2}  \:  \:  \:  \: OR \: \:  \:  \:  \:  \:  x \:  =  \frac{1 +  \sqrt{5} }{2} }}}

Similar questions