Math, asked by suruchi226, 2 months ago

x /x-1 + x -1/x = 2½
simplfy

please tell the solution​

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\bold{Given \:Question - }}

\rm :\longmapsto\:\dfrac{x}{x - 1}  + \dfrac{x - 1}{x}  = 2\dfrac{1}{2},  \:  \:  \:  \: \: x \ne \: 0,1

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\dfrac{x}{x - 1}  + \dfrac{x - 1}{x}  = 2\dfrac{1}{2}

\rm :\longmapsto\:\dfrac{ {x}^{2} +  {(x  -  1)}^{2}  }{x(x  -  1)}  = \dfrac{5}{2}

\rm :\longmapsto\:\dfrac{ {x}^{2} +  {x }^{2} +  {1}^{2}  -  2x}{x(x  -  1)}  = \dfrac{5}{2}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \sf \:  \because \:  {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy}

\rm :\longmapsto\:\dfrac{ {2x}^{2}  -  2x + 1 }{ {x}^{2}   -  x}  = \dfrac{5}{2}

\rm :\longmapsto\: {4x}^{2}   -  4x + 2 =  {5x}^{2}   -  5x

\rm :\longmapsto\: {x}^{2}   -  x - 2 = 0

\rm :\longmapsto\: {x}^{2}   -  2x  +  x - 2 = 0

\rm :\longmapsto\:x(x  -  2)  + 1(x  -  2) = 0

\rm :\longmapsto\:(x  -  2)(x  +  1) = 0

\bf\implies \:x =   2 \:  \:  \: or \:  \:  -  \: 1

Verification :-

When x = 2

\rm :\longmapsto\:\dfrac{x}{x - 1}  + \dfrac{x - 1}{x}

\rm :\longmapsto\: =  \: \dfrac{  2}{  2 - 1}  + \dfrac{ 2 - 1}{  2}

\rm :\longmapsto\: =  \: 2  + \dfrac{ 1}{ 2}

\rm :\longmapsto\: =  \: \dfrac{5}{2}

Hence, x = 2 is solution of given equation.

When x = - 1

\rm :\longmapsto\:\dfrac{x}{x - 1}  + \dfrac{x - 1}{x}

\rm :\longmapsto\: =  \: \dfrac{ - 1}{ - 1 - 1} +  \dfrac{ - 1 - 1}{ - 1}

\rm :\longmapsto\: =  \: \dfrac{1}{2}  + 2

\rm :\longmapsto\: =  \: \dfrac{5}{2}

Hence, x = - 1 is a solution of given equation.

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

  • If Discriminant, D > 0, then roots of the equation are real and unequal.

  • If Discriminant, D = 0, then roots of the equation are real and equal.

  • If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

  • Discriminant, D = b² - 4ac

Similar questions