Math, asked by mehaksharma6176, 4 months ago

x(x+1)(x+2)/(x+3)(x+4)(x+5) partial fractions

Answers

Answered by PharohX
4

Step-by-step explanation:

  \green{  \rightarrow\large{ \sf \: GIVEN} \leftarrow}

  \:  \sf \:  \frac{x(x + 1)(x + 2)}{( x + 3)(x + 4)(x + 5)}  \\

  \green{  \rightarrow\large{ \sf \: TO \:  \:  FIND } \leftarrow}

 \sf \: Partial \:  \:  fraction  \:  \: of \: this \: term

  \green{  \rightarrow\large{ \sf \: SOLUTION} \leftarrow}

  \:  \sf \: let \:  the \: partial \: fraction \: of \:  \\  \sf\frac{x(x + 1)(x + 2)}{( x + 3)(x + 4)(x + 5)}  =  \frac{A}{(x + 3)}  +  \frac{B}{(x + 4)}  +  \frac{C}{(x + 5)}  \\  \\   \sf \:  \: \: first \: for \: finding \: the \: value \: of \: A \: put \: x =  - 3 \: on \: left \: side \:  \\  \sf \: but \: not \: in \: thplace \: of \: (x + 3) \\  \\   \implies\sf \: A =  \frac{( - 3)( - 3 + 1)( - 3 + 2)}{( - 3  + 4)( - 3 + 5)}  \\  \\ \implies  \sf \: A =  \frac{( - 3)( - 2)( - 1)}{(1)(2)}  \\  \\  \implies  \boxed{ \sf \: A =   - 3}

 \sf \:  \large \: similarly \:

 \sf \: for \: finding \: the \: value \: of \:B \:  \: put \: x =  - 4 \:  \: on \: lest \: side \\ \sf \: but \:  not \: put \:  \: in \: (x + 4) \\ \\ \implies \sf \: B \:  =  \frac{( - 4)( - 4 + 1)( - 4 + 2)}{( - 4 + 3)( - 4 + 5)}  \\  \\\implies \sf \:  B =  \frac{( - 4)( - 3)( - 2)}{( - 1)(1)}  \\  \\ \implies \sf \:  \boxed{ \sf \: B \:  =  24}

 \sf \: for \: finding \: the \: value \: of \: C \:put \: x \: =  - 5 \:   \\  \sf\: on \: left \: side \:  \: but \: not \: in \: (x + 5) \\  \\\implies   \sf \: C =  \frac{( - 5)( - 5 + 1)( - 5 + 2)}{( - 5 + 3)( - 5 + 4)}  \\  \\ \implies \sf C=  \frac{( - 5)( - 4) (- 3)}{( - 2)( - 1)}  \\  \\\implies  \boxed{\sf C =  - 30}

 \sf \: Replace \:  \:  the \:  \:  value  \:  \: of  \:  \: A , B , C

\sf \: hence\:  the \: partial \: fraction \: \:  \\  \sf\frac{x(x + 1)(x + 2)}{( x + 3)(x + 4)(x + 5)}  =   - \frac{3}{(x + 3)}  +  \frac{24}{(x + 4)}   -   \frac{ 30}{(x + 5)}

Similar questions