x×√(x^2+y^2) + tan ^-1(y/x)=1,find (dy/dx)
Answers
Answer:
dy
=
x−y
x+y
if log(x
2
+y
2
)=2tan
−1
x
y
Given:
\log \left(x^{2}+y^{2}\right)=2 \tan ^{-1} \frac{y}{x}log(x
2
+y
2
)=2tan
−1
x
y
To Prove:
\frac{d y}{d x}=\frac{x+y}{x-y}
dx
dy
=
x−y
x+y
Solution:
\log \left(x^{2}+y^{2}\right)=2 \tan ^{-1} \frac{y}{x}log(x
2
+y
2
)=2tan
−1
x
y
We need to find the derivative of y with respect to x.
Differentiating with respect to x on both sides.
\log \left(x^{2}+y^{2}\right)=2 \tan ^{-1} \frac{y}{x}log(x
2
+y
2
)=2tan
−1
x
y
\frac{1}{x^{2}+y^{2}}\left(2 x+2 y\left(\frac{d y}{d x}\right)\right)=\frac{2\left(\frac{x\left(\frac{d y}{d x}\right)-y(1)}{x^{2}}\right)}{\left(1+\frac{y^{2}}{x^{2}}\right)}
x
2
+y
2
1
(2x+2y(
dx
dy
))=
(1+
x
2
y
2
)
2(
x
2
x(
dx
dy
)−y(1)
)
Where we know that \frac{dy}{dx} =y_1
dx
dy
=y
1
\frac{2\left(x+y y_{1}\right)}{x^{2}+y^{2}}=\frac{2\left(x y_{1}-y\right)}{x^{2}+y^{2}}
x
2
+y
2
2(x+yy
1
)
=
x
2
+y
2
2(xy
1
−y)
Cancelling x^2+y^2x
2
+y
2
on both sides and multiplying 2 we get
2 x+2 y y_{1}=2 x y_{1}-2 y2x+2yy
1
=2xy
1
−2y
Cancelling out 2 on both sides
\begin{gathered}\begin{array}{l}{x+y y_{1}=x y_{1}-y} \\ {x+y=x y_{1}-y y_{1}}\end{array}\end{gathered}
x+yy
1
=xy
1
−y
x+y=xy
1
−yy
1
Shifting the term which has y_1y
1
on one side
\begin{gathered}\begin{array}{l}{x+y=y_{1}(x-y)} \\ {y_{1}=\frac{x+y}{x-y}}\end{array}\end{gathered}
x+y=y
1
(x−y)
y
1
=
x−y
x+y
Substituting \frac{d y}{d x}=y_{1}
dx
dy
=y
1
\bold{\frac{d y}{d x}=\frac{x+y}{x-y}}
dx
dy
=
x−y
x+y
Hope it helps you
Thank you
Answer:
Step-by-step explanation:
Given :
x×√(x^2+y^2) + tan ^-1(y/x)=1,find (dy/dx)
Solution:
Differentiating both sides of the given relation with respect to x, we get,
dx
d
[log(x
2
+y
2
)]=2
dx
d
[tan
−1
(
x
y
)]
x
2
+y
2
1
×
dx
d
(x
2
+y
2
)=2×
1+(y/x)
2
1
×
dx
d
(
x
y
)
x
2
+y
2
1
[
dx
d
(x
2
)+
dx
d
(y
2
)]=2×
x
2
+y
2
x
2
[
x
2
x
dx
dy
−y×1
]
x
2
+y
2
1
[2x+2y
dx
dy
]=
x
2
+y
2
2
[x
dx
dy
−y]
2[x+y
dx
dy
]=2[x
dx
dy
−y]
x+y
dx
dy
=x
dx
dy
−y
dx
dy
(y−x)=−(x+y)
dx
dy
=
x−y
x+y
If u still have doubt then u can understand in the Image.