Math, asked by nishabhatia421, 4 months ago

*"x (x + 3 ) - 6 = 12" Which of the following can be a value of x ?"*

1️⃣ -1
2️⃣ 2
3️⃣ 3
4️⃣ -5​

Answers

Answered by Anonymous
15

Step-by-step explanation:

 \blue{ \bf{ \underline{QUESTION} : -  }}

x (x + 3 ) - 6 = 12" Which of the following can be a value of x ?"*

_________________________

 \boxed{ \huge{ \bold{Given}}}

  •  \large{ \sf{ \bold{x(x + 3) - 6 = 12}}}

 \boxed{ \huge{ \bold{ to \: find}}}

  • Value of X

 \star{ \large{ \bold{ \sf{ \pink{ \underline{ \underline{{Solution :  - }}}}}}}}

 \large{ \sf{ \bold{x(x + 3) - 6 = 12}}}

 \large{ \sf{ \implies{ {x}^{2}  + 3x - 6 = 12}}}

 \large{ \sf{ \implies{ {x}^{2}  + 3x - 6 - 12 = 0}}}

\large{ \sf{ \implies{ {x}^{2}  + 3x - 18 = 0}}}

\large{ \sf{ \implies{ {x}^{2}  + 6x - 3x - 18 = 0}}}

\large{ \sf{ \implies{x (x + 6) - 3(x + 6) = 0}}}

\large{ \sf{ \implies{(x - 3) \: (x + 6) = 0}}}

NoW ,

 \large{ \sf{ \red{x - 3 = 0}}}

 \therefore{ \boxed{ \large{ \sf{ \red{x = 3}}}}}

Again,

 \large{ \sf{ \purple{x + 6 = 0}}}

 {\therefore{ \boxed{\large{ \sf{ \purple{x =  - 6}}}}}}

 \boxed{ \underline{ \underline{ \orange{ \mathfrak{no - 3 \: is \: you're \: answer(x = 3)}}}}}

_________________________


Anonymous: Colourful and vibrant and awesome answer ✨ !
Sitααrα: ধুনীয়া!
Answered by mehakShrgll
0

QUESTION

:−

x (x + 3 ) - 6 = 12" Which of the following can be a value of x ?"*

_________________________

\boxed{ \huge{ \bold{Given}}}

Given

\large{ \sf{ \bold{x(x + 3) - 6 = 12}}}x(x+3)−6=12

\boxed{ \huge{ \bold{ to \: find}}}

tofind

Value of X

\star{ \large{ \bold{ \sf{ \pink{ \underline{ \underline{{Solution : - }}}}}}}}⋆

Solution:−

\large{ \sf{ \bold{x(x + 3) - 6 = 12}}}x(x+3)−6=12

\large{ \sf{ \implies{ {x}^{2} + 3x - 6 = 12}}}⟹x

2

+3x−6=12

\large{ \sf{ \implies{ {x}^{2} + 3x - 6 - 12 = 0}}}⟹x

2

+3x−6−12=0

\large{ \sf{ \implies{ {x}^{2} + 3x - 18 = 0}}}⟹x

2

+3x−18=0

\large{ \sf{ \implies{ {x}^{2} + 6x - 3x - 18 = 0}}}⟹x

2

+6x−3x−18=0

\large{ \sf{ \implies{x (x + 6) - 3(x + 6) = 0}}}⟹x(x+6)−3(x+6)=0

\large{ \sf{ \implies{(x - 3) \: (x + 6) = 0}}}⟹(x−3)(x+6)=0

NoW ,

\large{ \sf{ \red{x - 3 = 0}}}x−3=0

\therefore{ \boxed{ \large{ \sf{ \red{x = 3}}}}}∴

x=3

Again,

\large{ \sf{ \purple{x + 6 = 0}}}x+6=0

{\therefore{ \boxed{\large{ \sf{ \purple{x = - 6}}}}}}∴

x=−6

\boxed{ \underline{ \underline{ \orange{ \mathfrak{no - 3 \: is \: you're \: answer(x = 3)}}}}}

no−3isyou

reanswer(x=3)

Similar questions