Math, asked by princejoshi56, 10 months ago

√x/x-3 + √x-3 =5/2


brainly sir please answer​

Answers

Answered by allysia
1
Hey bud,



I'm hoping your question looks something like this,

 \sqrt{ \frac{ x}{x - 3} }  +  \sqrt{x - 3}  =  \frac{5}{2}  \\  \\  \\  =  \frac{ \sqrt{x} }{ \sqrt{x - 3} }  +  \sqrt{ x - 3}  =  \frac{5}{2}


Let's make a common denominator first,
 \frac{ \sqrt{x}  + x - 3}{ \sqrt{x - 3} }  =  \frac{5}{2}  \\


squaring both sides gives,

 \frac{ {( \sqrt{x} )}^{2}  +  {(x - 3)}^{2} }{x - 3}  =  \frac{25}{4}  \\  \\   \frac{x +  {x}^{2}  - 6x + 9}{x - 3}  =  \frac{25}{4}  \\   \\    \frac{ {x}^{2} - 5x + 9 }{x - 3}  =  \frac{25}{4}  \\  \\
Doing a bit of crossmultiplication gives,


4 {x}^{2}  - 20x + 36 = 25x - 75 \\  \\ 4 {x}^{2}  - 45x + 111 = 0


Solving this quadratic equation gives it's roots as,

 \frac{45 +  \sqrt{249} }{8}  \\  \\  \: and \\  \\  \frac{45 -  \sqrt{249} }{8}



And so these are the two possible answers to your x here.



Cheers.
Kudos to Brainly.
Answered by TooFree
1

Answer:

x = 4 or x = -1

Step-by-step explanation:

\sqrt{\dfrac{x}{x - 3} } +  \sqrt{\dfrac{x - 3}{x} } = \dfrac{5}{2}

Define y:

\text{Let y} = \sqrt{\dfrac{x}{x - 3} } ,

\text{Therefore} \sqrt{\dfrac{x - 3}{x } } = \dfrac{1}{y}

Rewrite the equation:

y + \dfrac{1}{y} = \dfrac{2}{5}

Solve y:

y + \dfrac{1}{y} = \dfrac{2}{5}

\dfrac{y^2 + 1}{y} = \dfrac{2}{5}

5(y^2 + 1) = 2y

5y^2 + 5 = 2y

5y^2 - 2y + 5 = 0

y = 2 \text{ or } y = \dfrac{1}{2}

Solve x (if y = 2):

\sqrt{\dfrac{x}{x - 3} }  = 2

\dfrac{x}{x - 3}   = 4

x = 4(x - 3)

x = 4x - 12

3x = 12

x = 4

Solve x (if y = 1/2):

\sqrt{\dfrac{x}{x - 3} }  = \dfrac{1}{2}

\dfrac{x}{x - 3} } = \dfrac{1}{4}

4x = x - 3

3x = - 3

x = -1

Similar questions