Math, asked by bosesidharth12, 11 months ago

x+√(x²-1)/x-√(x²-1)+x-√(x²-1)/x+√(x²-1)=14 then what is the value of x?​

Answers

Answered by pulakmath007
7

SOLUTION

TO DETERMINE

The value of x when

 \displaystyle \sf{ \frac{x +  \sqrt{ {x}^{2} - 1 } }{x -  \sqrt{ {x}^{2}  - 1} }  + \frac{x  -  \sqrt{ {x}^{2} - 1 } }{x  +  \sqrt{ {x}^{2}  - 1} }  = 14}

EVALUATION

Here it is given that

 \displaystyle \sf{ \frac{x +  \sqrt{ {x}^{2} - 1 } }{x -  \sqrt{ {x}^{2}  - 1} }  + \frac{x  -  \sqrt{ {x}^{2} - 1 } }{x  +  \sqrt{ {x}^{2}  - 1} }  = 14}

 \displaystyle \sf{ \implies \:  \frac{{(x +  \sqrt{ {x}^{2} - 1 } )}^{2} +  {(x +  \sqrt{ {x}^{2} - 1 } )}^{2} }{(x -  \sqrt{ {x}^{2}  - 1})(x  +  \sqrt{ {x}^{2}  - 1}) }   = 14}

 \displaystyle \sf{ \implies \:  \frac{{2( {x}^{2} +  {x}^{2} - 1 } )  }{( {x}^{2} -  {x}^{2}   +  1)}  = 14}

 \displaystyle \sf{ \implies \:  2(2 {x}^{2}  - 1)  = 14}

 \displaystyle \sf{ \implies \:  (2 {x}^{2}  - 1)  = 7}

 \displaystyle \sf{ \implies \:2 {x}^{2} = 8 }

 \displaystyle \sf{ \implies \: {x}^{2} = 4 }

 \displaystyle \sf{ \implies \:x =  \pm \: 2}

FINAL ANSWER

The required value

 \sf{x =  \pm \: 2}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If x=√3a+2b + √3a-2b / √3a+2b - √3a-2b

prove that bx²-3ax+b=0

https://brainly.in/question/19664646

2. the order of the surd 7√8

https://brainly.in/question/31962770

Similar questions