Math, asked by iamlegend062002, 11 months ago

√x+√y=1 differanciate with respect to x
 \sqrt{x } + \sqrt{y} = 1

Answers

Answered by Anonymous
8

Question :

 \sqrt{x}  +  \sqrt{y}  = 1

differnatiate with respect to x

Theory :

chain rule :

let y = f(t) and t = g(x)

then ,

 \frac{dy}{dx}  =  \frac{dy}{dt}  \times  \frac{dt}{dx}

Formulas

 \frac{d(x {}^{n} )}{dx}  = nx {}^{n - 1}

 \frac{d(constant)}{dx}  = 0

Solution :

 \sqrt{x}  +  \sqrt{y}  = 1

differnatiate with respect to x ,

 \frac{d(x {}^{ \frac{1}{2} }) }{dx}  +  \frac{d(y {}^{ \frac{1}{2} }) }{dy}  \times  \frac{dy}{dx}  = 0

 \implies \:  \frac{1}{2} x {}^{ \frac{1}{2} - 1 }  +  \frac{1}{2} y {}^{  \frac{1}{2}   - 1}  \times  \frac{dy}{dx}  = 0

 \implies \:  \frac{1}{2 \sqrt{x} }  +  \frac{1}{2 \sqrt{y} }  \times  \frac{dy}{dx}  = 0

 \implies \:  \frac{1}{2 \sqrt{y} }  \times  \frac{dy}{dx}  =  -  \frac{1}{2 \sqrt{x} }

 \implies \:   \frac{dy}{dx}  =  \frac{ - 2 \sqrt{y} }{2 \sqrt{x} }

 \frac{dy}{dx}  =  -  \frac{ \sqrt{y} }{ \sqrt{x} }

which is the required solution!

Similar questions