Math, asked by Gishanshah3619, 10 months ago

√x+√y=√10 dy/dx find the derivative of the function

Answers

Answered by BendingReality
66

Answer:

- √ y / √ x

Step-by-step explanation:

Given :

√ x + √ y = √ 10

We have to find d y / d x :

Applying chain rule :

Diff. w.r.t. x :

= > 1 / 2 √ x + 1 / 2 √ y . ( y )' = 0

= >  1 / 2 √ y . ( y )' = - 1 / 2 √ x

= >  1 / √ y . ( y )' = - 1 / √ x

= > y' = - √ y / √ x

Hence we get required answer!

Answered by Anonymous
4

Given ,

The function is √x + √y = √10

Differentiating with respect to x , we get

 \sf \mapsto \frac{d \sqrt{x} }{dx}  +  \frac{d \sqrt{y} }{dx}  =  \frac{d \sqrt{10} }{dx}  \\  \\  \sf \mapsto \frac{1}{2 \sqrt{x} }  +  \frac{1}{2 \sqrt{y} }  \times  \frac{dy}{dx}  = 0 \\  \\  \sf \mapsto \frac{1}{2 \sqrt{y} }  \times  \frac{dy}{dx}  = -  \frac{1}{2 \sqrt{x} }  \\  \\  \sf \mapsto \frac{dy}{dx}  =  - \frac{ \sqrt{y} }{ \sqrt{x} }

Remmember :

  \sf \star \:  \: \frac{d(constant)}{dx}  = 0 \\  \\ \star \:  \:  \sf \frac{d \sqrt{x} }{dx}  =  \frac{1}{2 \sqrt{x} }

Similar questions