Math, asked by yatharthsshah, 1 year ago

x + y = 14 and xy = 16. Find the value of x2 +y2

Answers

Answered by Rose08
19

Answer :-

\large{\underline{\boxed{\sf {x}^{2} + {y}^{2} = 164}}}

Explanation :-

Given :

  • x + y = 14
  • xy = 16

Solution :

We know that,

  • (x + y)² = x² + y² + 2xy

By putting the values, we get :-

\sf\longrightarrow {(14)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2 \times 16

\sf\longrightarrow 196  =  {x}^{2}  +  {y}^{2}  + 32

\sf\longrightarrow 196 - 32  =  {x}^{2}  +  {y}^{2}

\sf\longrightarrow 196 - 32  =  {x}^{2}  +  {y}^{2}

\sf\longrightarrow 164 =  {x}^{2}  +  {y}^{2}

\boxed{\therefore{\sf {x}^{2}  +  {y}^{2} = 164}}

Answered by Anonymous
56

\huge { \red {\underline{ \frak{Your  \: answEr :}}}}

\huge{\boxed{ \star \:  \bold{ {x}^{2} +  {y}^{2}  = 164 }}}

\huge { \red {\underline{ \frak{Explanation :}}}}

\large { \underline{ \mathcal{Given :}}}

  • x + y = 14
  • x + y = 14xy = 16

\large { \underline{ \mathcal{To  \:  \: Find :}}}

Q. Find the Value of ( +).

\large { \underline{ \mathcal{Solution :}}}

\green{\boxed{  \tt {We~Know~that~(x + y)}^{2}  =  {x}^{2}  +  {y}^{2} + 2xy  }}

Plugging in the Values ;

 \large{\Rightarrow \tt{ {(14)}^{2} =  {x}^{2} +  {y}^{2}  + (2 \times 16)  }}

 \scriptsize  \pink{\blacksquare \tt{ \:  \:  {x + y = 14 \: \:  and \:  \: xy = 16}}}

 \large{\Rightarrow \tt{196 =  {x}^{2} +  {y}^{2}  + 32}}

\large{\Rightarrow \tt{ {x}^{2}  +  {y}^{2} = 196 - 32}}

 \purple{\huge\boxed {\Rightarrow  \tt {x}^{2} +  {y}^{2}   = 164}}

Similar questions