Math, asked by sanjayyadav5396, 5 months ago

X+y=15 and xy=56 find 2x+2y

Answers

Answered by dinahmondol
0

Answer:

30

Step-by-step explanation:

x+y=15, xy=56

56=7x8

x=7 , y=8

2x+2y

=(2x7)+(2x8)

=14+16

30

Answered by vanshikavikal448
63

required answer →

 \bold { \underline{ \underline  \color{orange}{given}}} \orange→ \:

x + y = 15 -------------(i)

xy = 56 -----------(ii)

 \bold { \underline{ \underline  \color{orange}{answer}}} \orange→

2x+2y = 30

 \bold { \underline{ \underline  \color{orange}{solution}}} \orange→

first way :-

we know that..

x + y = 15

now multiply 2 by both sides..

 \implies \: 2 \times (x + y) = 2 \times 15 \\ \\  \:  \:  \:  \:  \:  \: →2x + 2y = 30

second way :-

we know that.. x + y = 15

→ x = 15 - y .........(iii)

now substitute the value of x in eq.(ii)

 \implies \: (15 - y)y = 56 \\  \implies \: 15y -  {y}^{2}  = 56 \\  \implies \:  {y}^{2}  - 15y + 56 = 0

it's form a quadratic equation

now we will solve the equation by Splitting the Middle term ;

  \: \:   \:  \: {y}^{2}  - 15y + 56 \\  \\     →{y}^{2}  +  ( - 8 - 7)y + 56  = 0 \\ \\ →  {y}^{2}  - 8y - 7y + 56 = 0 \\  \\ → y(y - 8) - 7(y - 8) = 0 \\  \\ →(y - 7)(y - 8) = 0 \\ \\   \implies \: y - 7 = 0 \:  \: or \:  \:  y - 8 = 0 \\  \\  \implies \: y = 7 \:  \: or \: \:  \: y = 8

now substitute the value of 7 in eq.(iii)

→ x = 15 - 7 or x = 15 - 8

→ x = 8 or x = 7

so value of x can be 7 or 8

and same value of y also be 7 or 8

now put the value of x and y in 2x + 2y

 \implies \: (2 \times 7)+ (2 \times 8)  \\→ \: 14 + 16  \\ → \: 30

hence, 2x + 2y = 30

Similar questions