Math, asked by reddiwarpooja35, 1 year ago

(x+y)=15
xy=54
Find the value of:
x^2-y^2

Answers

Answered by aakashvishwakarma58
3

xy = 54
(x + y) = 15
(x + y) {}^{2}  = a {}^{2} +  b {}^{2} + 2ab
(x + y) {}^{2}  = (a - b) {}^{2}  + 4ab
15 {}^{2}  = (a - b) {}^{2}  - 4 \times 54
(a - b) {}^{2}  =  225  + 216
(a - b) =   \sqrt{441}
(a - b) = 21
hey dear your answer is here.


plz mark me in brainlist answer.






























Radhe Radhe


reddiwarpooja35: Sorry but this is not the answer
Answered by Anonymous
4
Answer :

given \:  =  >  \\  \\  \binom{(x + y) = 15}{xy = 54}  \\  \\ solve \: the \: equation \: for \: x \\  \\  \binom{x = 15 - y}{xy = 54}  \\  \\ substitute \: the \: value \: of \: x \: in \:  the \\ equation \: xy = 54 \\  \\( 15 - y)y = 54 \\  \\ solve \: for \: y \\  \\ 15y -  {y}^{2}  = 54 \\  \\ 15y -  {y}^{2}  - 54 = 0 \\  \\  - y {}^{2}  + 15y - 54 = 0 \\  \\ change \: the \: signs \\  \\ y {}^{2}  - 15y + 54 = 0

solve \: the \: quadratic \: equation \\  \\ ax {}^{2}  + bx + c = 0 \\  \\ by \: using \\  \\ x =  \frac{ - b +  \sqrt{ {b}^{2} - 4ac } }{2a}  \\  \\ therefore \\  \\ y =   \frac{ - ( - 15) +  \sqrt{( - 15 {)}^{2}  - 4 \times 1 \times 54} }{2 \times 1}

y =  \frac{15 +  \sqrt{225 - 4 \times 54} }{2 \times 1}  \\  \\ y =  \frac{15 +  \sqrt{225 - 216} }{2}  \\  \\ y =  \frac{15 +  \sqrt{9} }{2}  \\  \\ y =  \frac{15 + 3}{2}  \\  \\  y =   \frac{18}{2}  = 9

substitute \: the \: value \: of \: y \:  \\ into \: the \: equation \: x = 15 - y \\  \\ x = 15 - 9 = 6


now \\  \\ x {}^{2}  - y {}^{2}  =  >  \\  {6}^{2}  -  {9}^{2}  \\  \\  =  > 36 - 81 \\  \\ =  >  \:  - 45


HOPE IT WOULD HELP YOU

reddiwarpooja35: Thanks
Anonymous: you are welcome dear☺️
Similar questions