Math, asked by yk159790, 6 months ago

x+y=16'x-y=4Find the solution of the following pair of linear equations

Answers

Answered by kunjal75
10

x + y = 16

x - y = 4

Add both equations

2x = 20

x = 10

Put value of x in any one of the equation

10 + y = 16

y = 6

Therefore the values of x and y are 10 and 6 respectively.

Hope this helps you and please mark it as brainlist

Thank You:)

Answered by aryan073
12

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□

\mathtt{\huge{\underline{\red{Answer\: :}}}}

 \:  \large \orange{ \bold{ \underline{step \: by \: step \: explaination : }}}

\green{\bf{Given}} \begin{cases} \sf{x+y=16 ...(1)} \\ \sf{x-y=4  .....(2)} \\ \rm{Find \: the \: solution \: of \:following \:pairs } \end{cases}

 \:    \qquad \bf{x + y = 16} \:  \:  \:  \:  \: ......eqn(1)

 \:  \qquad \bf \: x -  y = 4 \:  \:  \:  \: ......eqn(2)

 \:  \:  \quad \implies \sf{2x = 20}

 \:  \quad \implies \sf{x = 10}

  • Put the value of X in equation (1)

 \:  \quad \implies \bf \:  \: x + y = 16

 \:  \quad \implies \sf \: 10 + y = 16

 \:  \quad \implies \sf \: y = 16 - 10

 \:  \quad \implies \sf \: y = 6

 \:   \sf \large \boxed{ \bf{ \underline{the \: solution \: of \: this \: linear \: equation \: is \: x = 10 \: and \: y = 6}}}

Similar questions