(x+y)^2 +2 (x+y)+1 is equivalent to
a) (x+y+1)(x+y-1)
b) (x-y+1)(x+y-1)
c) (x-y-1)(x-y-1)
d) (x+y+1)(x+y+1)
Answers
Answered by
0
Answer:
Given,
dx
dy
(x
2
y
3
+xy)=1
dx
dy
=
x
2
y
3
+xy
1
dy
dx
=x
2
y
3
+xy
dy
dx
−xy=x
2
y
3
x
2
1
dy
dx
−
x
y
=y
3
substitute
x
1
=u
dy
du
=−
x
2
1
dy
dx
−
dy
du
−uy=y
3
dy
du
+uy=−y
3
I.F=e
∫ydy
=e
2
y
2
u×e
2
y
2
=−∫y
3
e
2
y
2
dy
=−2(
2
y
2
−1)e
2
y
2
+c
=(2−y
2
)e
2
y
2
+c
⇒x(2−y
2
)+cxe
−
2
y
2
=1
make me brillianlist plz follow me and like this answer
Answered by
1
Answer:
d) (x+y+1)(x+y+1)
Step-by-step explanation:
we have
=> (x+y)² + 2(x+y) + 1
=> (x+y)² + 2*(x+y)*1 + 1²
=> ((x+y)+1)²
=> (x+y+1)(x+y+1)
mark this as brainliest if this helps you out.
Similar questions