Math, asked by Saikatmj, 7 months ago

x-y-2)dx-(2x-2y-3)dy=0 ​

Answers

Answered by Syamkumarr
3

Answer:

x + log (x - y - 1) = c₁ is the required answer.

Step-by-step explanation:

Given that (x - y - 2)dx -(2x - 2y - 3)dy = 0

=> (x - y - 2)dx = (2x - 2y - 3)dy

=> \frac{dy}{dx} = \frac{x-y-2}{2x-2y-3}

=> Let (x - y - 2) = t

=> \frac{dt}{dx} = 1 -  \frac{dy}{dx} - 0 = 1 -  \frac{dy}{dx}

On substituting the value in above

=> 1 -  \frac{dt}{dx}  = \frac{t}{2t+1}

=>  \frac{dt}{dx} = 1 - \frac{t}{2t+1}  = \frac{2t+1 -t}{2t+1} = \frac{t+1}{2t+1}

Integrating both sides,

\int {\frac{2t+1}{t+1} } \, dt = \int\, dx

=> \int ({\frac{t}{t+1} + 1 }) \, dt = x + c

=>  \int ({\frac{t}{t+1} ) \, dt + t = x + c                       --(i)

Now for solving   \int ({\frac{t}{t+1} ) \, dt

Let t + 1 = u

=> \frac{du}{dt} = 1 + 0 = 1

=>  \int ({\frac{t}{t+1} ) \, dt  = \int{\frac{u-1}{u}} \, du

                     =  \int{(1-\frac{1}{u}}) \, du        (as \int  \, dx = x)

                     = u - log u             (as \int\frac{1} {x} \, dx = log x)

Substituting this in equation (i)

=> u - log u + t = x + c

As u = t + 1

=> t + 1 - log(t + 1) + t = x + c

=> 1 - log (t + 1) = x + c

As x - y - 2 = t

=> 1 - log (x - y - 2 + 1) = x + c

=> 1 - log (x - y - 1) = x + c

=> 1 - c = x + log (x - y - 1)

=> x + log (x - y - 1) = c₁

Similar questions